The detection of partial discharge through analysis of SF6 gas components in gas-insulated switchgear, is significant for the diagnosis and assessment of the operating state of power equipment. The present study proposes the use of a TiO2 nanotube array sensor for detecting the SF6 decomposition product SO2, and the application of the anodic oxidation method for the directional growth of highly ordered TiO2 nanotube arrays. The sensor response of 10–50 ppm SO2 gas is tested, and the sensitive response mechanism is discussed. The test results show that the TiO2 nanotube sensor array has good response to SO2 gas, and by ultraviolet radiation, the sensor can remove attached components very efficiently, shorten recovery time, reduce chemical poisoning, and prolong the life of the components.
References
[1]
Beyer, C.; Jenett, H.; Kfockow, D. Ifluence of reactive SFX gases on electrode surfaces after electrical discharges under SF6 atmosphere. IEEE Trans. Dielectr. Electr. Insul 2000, 7, 234–240, doi:10.1109/94.841815.
[2]
Christophorou, L.G.; Olthoff, J.K. Electron interactions with SF6. J. Phys. Chem. Ref. Data 2000, 29, 267–330, doi:10.1063/1.1288407.
[3]
Kurte, R.; Heise, H.M.; Klockow, D. Quantitative infrared spectroscopic analysis of SF6 decomposition products obtained by electrical partial discharges and sparks using PLS-calibrations. J. Mol. Struct 2001, 565–566, 505–513.
[4]
Suehiro, J.; Zhou, G.; Hara, M. Detection of partial discharge in SF6 gas using a carbon nanotube-based gas sensor. Sens. Actuat. B 2005, 2, 164–169.
[5]
Zhang, X.-X.; Liu, W.-T.; Tang, J.; Xiao, P. Study on PD detection in SF6 using multi-wall carbon nanotube gas sensor. IEEE Trans. Dielectr. Electr. Insul 2010, 17, 833–838, doi:10.1109/TDEI.2010.5492256.
[6]
Piemontesi, M.; Niemeyer, L. Sorption of SF6 and SF6 Decomposition Products by Activated Alumina and Molecular Sieve 13X. Proceedings of IEEE International Symposium on Electrical Insulation, Montreal, QC, Canada, 16–19 June 1996.
[7]
Beyer, C.; Jenett, H.; Klockow, D. Influence of reactive SFx gases on electrode surfaces after electrical discharges under SF6 atmosphere. IEEE Trans. Dielectr. Electr. Insul 2000, 7, 234–240, doi:10.1109/94.841815.
[8]
Mor, G.K.; Shankar, K.; Paulose, M.; Varghese, O.K.; Grimes, C.A. Enhanced photocleavage of water using Titania nanotube arrays. Nano Lett 2005, 5, 191–195, doi:10.1021/nl048301k. 15792438
[9]
Grimes, C.A.; Mor, G.K. Springer: Norwell, MA, USA, 2009.
[10]
Seo, M.-H.; Yuasa, M.; Kida, T.; Huh, J.-S.; Yamazoe, N.; Shimanoe, K. Detection of organic gases using TiO2 nanotube-based gas sensors. Procedia Chem 2009, 1, 192–195, doi:10.1016/j.proche.2009.07.048.
[11]
Lin, S.; Li, D.; Wu, J.; Li, X.; Akbar, S.A. A selective room temperature formaldehyde gas sensor using TiO2 nanotube arrays. Sens. Actuat. B 2011, 156, 505–509, doi:10.1016/j.snb.2011.02.046.
[12]
Yun, H. Preparation of NO2 Gas Sensor Based on TiO2 NanotubesM.S. Thesis. Dalian University of Technology, Dalian, China, 2005.
[13]
Varghese, O.K.; Gong, D.; Paulose, M.; Ong, K.G.; Grimes, C.A. Hydrogen sensing using Titania nanotubes. Sens. Actuat. B 2003, 93, 338–344, doi:10.1016/S0925-4005(03)00222-3.
[14]
Mor, G.K.; Varghese, O.K.; Paulose, M.; Shankar, K.; Grimes, C.A. A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 2006, 90, 2011–2075, doi:10.1016/j.solmat.2006.04.007.
[15]
Ruiz, A.M.; Sakai, G.; Cornet, A.; Shimanoe, K.; Morante, J.R.; Yamazoe, N. Cr-doped TiO2 gas sensor for exhaust NO2 monitoring. Sens. Actuat. B 2003, 93, 509–518, doi:10.1016/S0925-4005(03)00183-7.
[16]
Sun, J.-P.; Hui, C.; Xu, A.-L.; Liu, H.-W. Progress in research on gas-sensing properties of metal oxide thin films under UV irradiation. Electron. Compon. Mater 2005, 24, 65–68.