Bacteria of the genus Bradyrhizobium are able to establish a symbiotic relationship with peanut (Arachis hypogaea) root cells and to fix atmospheric nitrogen by converting it to nitrogenous compounds. Quorum sensing (QS) is a cell-cell communication mechanism employed by a variety of bacterial species to coordinate behavior at a community level through regulation of gene expression. The QS process depends on bacterial production of various signaling molecules, among which the N-acylhomoserine lactones (AHLs) are most commonly used by Gram-negative bacteria. Some previous reports have shown the production of QS signaling molecules by various rhizobia, but little is known regarding mechanisms of communication among peanut-nodulating strains. The aims of this study were to identify and characterize QS signals produced by peanut-nodulating bradyrhizobial strains and to evaluate their effects on processes related to cell interaction. Detection of AHLs in 53 rhizobial strains was performed using the biosensor strains Agrobacterium tumefaciens NTL4 (pZLR4) and Chromobacterium violaceum CV026 for AHLs with long and short acyl chains, respectively. None of the strains screened were found to produce AHLs with short acyl chains, but 14 strains produced AHLs with long acyl chains. These 14 AHL-producing strains were further studied by quantification of β-galactosidase activity levels (AHL-like inducer activity) in NTL4 (pZLR4). Strains displaying moderate to high levels of AHL-like inducer activity were subjected to chemical identification of signaling molecules by high-performance liquid chromatography coupled to mass spectrometry (LC-MS/MS). For each AHL-producing strain, we found at least four different AHLs, corresponding to N-hexanoyl-DL-homoserine lactone (C6), N-(3-oxodecanoyl)-L-homoserine lactone (3OC10), N-(3-oxododecanoyl)-L-homoserine lactone (3OC12), and N-(3-oxotetradecanoyl)-L-homoserine lactone (3OC14). Biological roles of 3OC10, 3OC12, and 3OC14 AHLs were evaluated in both AHL-producing and -non-producing peanut-nodulating strains. Bacterial processes related to survival and nodulation, including motility, biofilm formation, and cell aggregation, were affected or modified by the exogenous addition of increasing concentrations of synthetic AHLs. Our results clearly demonstrate the existence of cell communication mechanisms among bradyrhizobial strains symbiotic of peanut. AHLs with long acyl chains appear to be signaling molecules regulating important QS physiological processes in these bacteria.
References
[1]
Becking, J.H. The Rhizobium Symbiosis of the Nonlegume Parasponia. In Biological Nitrogen Fixation; Stacey, G.S., Evans, H.J., Eds.; Routledge: Chapman and Hall, NY, USA, 1992; pp. 497–559.
[2]
Urtz, B.E.; Elkan, G.H. Genetic diversity among Bradyrhizobium isolates that efectively nodulate peanut (Arachis hypogaea). Can. J. Microbiol 1996, 188, 65–75.
[3]
van Rossum, D.; Schuurmans, F.P.; Gillis, M.; Muyotcha, A.; van Verselveld, H.K. Genetic and phonetic analyses of Bradyrhizobium strains nodulating peanut (Arachis hypogaea L.) roots. Appl. Environ. Microbiol 1995, 61, 1599–1609.
[4]
Gage, D.J. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol. Mol. Biol. Rev 2004, 68, 280–300.
Williams, P. Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 2007, 153, 3923–3938.
[10]
Williams, P.; Winzer, K.; Chan, W.; Cámara, M. Look who’s talking: Communication and quorum sensing in the bacterial world. Philos. T. Roy. Soc. B 2007, 362, 1119–1134.
[11]
Hanzelka, B.L.; Greenberg, E.P. Evidence that the N-terminal region of the Vibrio fischeri LuxR protein constitutes an autoinducer-binding domain. J. Bacteriol 1995, 177, 815–817.
[12]
Parsek, M.R.; Greenberg, E.P. Acyl-homoserine lactone quorum sensing in Gram negative bacteria: A signaling mechanism involved in associations with higher organisms. Proc. Nat. Acad. Sci. USA 2000, 97, 8789–8793.
[13]
Brelles-Marino, G.; Bedmar, E.J. Detection, purification and characterisation of quorum-sensing signal molecules in plant-associated bacteria. J. Biotechnol 2001, 91, 197–209.
[14]
Loh, J.; Pierson, E.A.; Pierson, L.S.; Stacey, G.; Chatterjee, A. Quorum sensing in plant-associated bacteria. Curr. Opin. Plant Biol 2002, 5, 285–290.
[15]
González, J.E.; Marketon, M.M. Quorum sensing in nitrogen-fixing rhizobia. Microbiol. Mol. Biol. Rev 2003, 67, 574–592.
[16]
Sanchez-Contreras, M.; Bauer, W.D.; Gao, M.; Robinson, J.B.; Downie, A.J. Quorum-sensing regulation in rhizobia and its role in symbiotic interactions with legumes. Philos. Trans. R Soc. Lond. B Biol. Sci 2007, 362, 1149–1163.
[17]
Pierson, L.S.; Pierson, E.A. Roles of diffusible signals in communication among plant-associated bacteria. Phytopathology 2007, 97, 227–232.
[18]
Pongsilp, N.; Triplett, E.W.; Sadowsky, M.J. Detection of homoserine lactone-like quorum sensing molecules in Bradyrhizobium strains. Curr. Microbiol 2005, 51, 250–254.
[19]
Loh, J.; Yuen-Tsai, J.P.; Stacey, M.G.; Lohar, D.; Welborn, A.; Stacey, G. Population density-dependent regulation of the Bradyrhizobium japonicum nodulation genes. Mol. Microbiol 2001, 42, 37–46.
[20]
Loh, J.; Lohar, D.P.; Andersen, B.; Stacey, G. A two-component regulator mediates population-density-dependent expression of the Bradyrhizobium japonicum nodulation genes. J. Bacteriol 2002, 184, 1759–1766.
[21]
Westenberg, D.J. Evidence of AHL Autoinducer Production by the Soybean Symbiont Bradyrhizobium japonicum. In Nitrogen Fixation: Global Perspectives, Proceedings of the 13th International Congress on Nitrogen Fixation; Finan, T., O_Brian, M., Vessey, S., Newton, W., Eds.; CABI Publishing: Cambridge, UK, 2002; p. 409.
[22]
Loh, J.; Carlson, R.W.; York, W.S; Stacey, G. Bradyoxetin, a unique chemical signal involved in symbiotic gene regulation. Proc. Natl. Acad. Sci. USA 2002, 99, 14446–14451.
[23]
Ahlgren, N.A.; Harwood, C.S.; Schaefer, A.L.; Giraud, E.; Greenberg, E.P. Aryl-homoserine lactone quorum sensing in stem-nodulating photosynthetic bradyrhizobia. Proc. Natl. Acad. Sci. USA 2011, 108, 7183–7188.
[24]
Lindemann, A.; Pessi, G.; Schaefer, A.L.; Mattmann, M.E.; Christensen, Q.H.; Kessler, A.; Hennecke, H.; Blackwell, H.E.; Greenberg, E.P.; Harwood, C.S. Isovaleryl-homoserine lactone, an unusual branched-chain quorum-sensing signal from the soybean symbiont Bradyrhizobium japonicum. Proc. Natl. Acad. Sci. USA 2011, 108, 16765–16770.
[25]
Beringer, J.E. R factor transfer in Rhizobium leguminosarum. J. Gen. Microbiol 1974, 84, 188–198.
[26]
McClean, K.H.; Winson, M.K.; Fish, L.; Taylor, A.; Chhabra, S.R.; Camara, M.; Daykin, M.; Lamb, J.H.; Swift, S.; Bycroft, B.W.; Stewart, G.S.; Williams, P. Quorum sensing and Chromobacterium violaceum: Exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 1997, 143, 3703–3711.
[27]
Luo, Z.Q.; Clemente, T.E.; Farrand, S.K. Construction of a derivative of Agrobacterium tumefaciens C58 that does not mutate to tetracycline resistance. Mol. Plant Microbe Interact 2001, 14, 98–103.
[28]
Sambrook, J.; Fritsch, E.F.; Maniatis, F. Molecular Cloning: A Laboratory Manual, 2nd ed ed.; Cold Spring Harbor Laboratory: New York, NY, USA, 1989.
[29]
Chilton, N.W.; Barbano, J.P. Guidelines for reporting clinical trials. J. Periodontal Res. Suppl 1974, 14, 207–208.
[30]
Cha, C.E.; Gao, O; Chen, Y.C.; Shaw, P.D.; Farrand, S.K. Production of acyl-hosmoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Mol. Plant Microbe Interact 1998, 11, 1119–1129.
[31]
Farrand, S.K.; Qin, Y.; Oger, P. Quorum-sensing system of Agrobacterium plasmids: Analysis and utility. Methods Enzymol 2002, 358, 452–484.
[32]
Shaw, P.D.; Ping, G.; Daly, S.L.; Cha, C.; Cronan, J.E., Jr.; Rinehart, K.L. Detecting and characterizing N-acyl-homoserina lactone signal molecules by thin layer chromatography. Proc. Nathl. Acad. Sci. USA. 1997, 94, 6036–6041.
[33]
Miller, J.H. Experiments in Molecular Genetics; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1972.
[34]
O’Toole, G.A.; Kolter, R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: A genetic analysis. Mol. Microbiol 1998, 28, 449–461.
Nievas, F.; Bogino, P.; Nocelli, N.; Giordano, W. Genotypic analysis of isolated peanut-nodulating rhizobial strains reveals differences among populations obtained from soils with different cropping histories. Appl. Soil. Ecol 2012, 53, 74–82.
[37]
Bogino, P.; Banchio, E.; Giordano, W. Molecular diversity of peanut-nodulating rhizobia in soils of Argentina. J. Basic Microbiol 2010, 50, 274–279.
[38]
Wisniewski-Dye, F.; Downie, J.A. Quorum-sensing in Rhizobium. A. Van Leeuw 2002, 81, 397–407.
[39]
Marketon, M.M.; Gronquist, M.R.; Eberhard, A.; González, J.E. Characterization of the Sinorhizobium meliloti sinR/sinI locus and the production of novel N-acyl homoserine lactones. J. Bacteriol 2002, 184, 5686–5695.
[40]
Soutourina, O.A.; Bertin, P.N. Regulation cascade of flagellar expression in gram-negative bacteria. FEMS Microbiol. Rev 2003, 27, 505–523.
[41]
Ang, S.; Horng, T.Y.; Shu, J.C.; Soo, P.C.; Liu, J.H.; Yi, W.C.; Lai, H.C.; Luh, K.T.; Ho, S.W.; Swift, S. The role of RsmA in the regulation of swarming motility in Serratia marcescens. J. Biomed. Sci 2001, 8, 160–169.
[42]
Zhu, J.M.; Miller, M.B.; Vance, R.E.; Dziejerman, M.; Basseler, B.L.; Mekalanos, J.J. Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc. Natl. Acad. Sci USA 2002, 99, 3129–3134.
[43]
Sperandio, V.; Torres, A.; Kapper, J. Quorum sensing Escherichia coli regulators B and C (QseBC): A novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E.coli. Mol. Microbiol 2002, 43, 809–821.
[44]
Atkinson, S.; Chang, C.Y.; Patrick, H.L.; Buckley, C.M.; Wang, Y.; Sockett, R.E.; Cámara, M.; Williams, P. Functional interplay between the Yersinia pseudotuberculosis YpsRI and YtbRI quorum sensing systems modulates swimming motility by controlling expression of flhDC and fliA. Mol. Microbiol 2008, 69, 137–151.
[45]
Hoang, H.H.; Gurich, N.; González, J.E. Regulation of motility by ExpR/Sin quorum-sensing system in Sinorhizobium meliloti. J. Bacteriol 2007, 190, 861–871.
Parsek, M.R.; Greenberg, E.P. Sociomicrobiology: The connections between quorum sensing and biofilms. Trend. Microbiol 2005, 13, 27–33.
[48]
Potera, C. Biofilms invade microbiology. Science 1996, 273, 1795–1797.
[49]
Dong, Y.; Zhang, X.; An, S.; Xu, J.; Zhang, L. A novel two-component system BqsS-BqsR modulates quorum sensing-dependent biofilm decay in Pseudomonas aeruginosa. Commun. Integr. Biol 2008, 1, 88–96.
[50]
Rasmussen, T.B.; Bjarnsholt, T.; Sindersoe, M.E.; Hentzer, M.; Kristoffersen, P.; Kote, M.; Nielsen, J.; Eberl, L.; Givskov, M. Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J. Bacteriol 2005, 187, 1799–1814.
[51]
Daniels, R.; Vanderleyden, J.; Michiels, J. Quorum sensing and swarming migration in bacteria. FEMS Microbiol. Rev 2004, 28, 261–289.
[52]
Stoodley, P.; Wilson, S.; Hall-Stoodley, L.; Boyle, J.D.; Lappin-Scott, H.M.; Costerton, J.W. Growth and detachment of cell clusters from mature mixed-species biofilms. App. Environ. Microbiol 2001, 67, 5608–5613.
[53]
Johnson, L.R. Microcolony and biofilm formation as a survival strategy for bacteria. J. Theor. Biol 2008, 251, 24–34.
[54]
Rinaudi, L.V.; Giordano, W. An integrated view of biofilm formation in rhizobia. FEMS Microbiol. Lett 2010, 304, 1–11.
Heydorn, A.; Ersb?ll, B.; Kato, J.; Hentzer, M.; Parsek, M.R.; Tolker-Nielsen, T.; Givskov, M.; Molin, S. A statistical analysis of Pseudomonas aeruginosa biofilm development: Impact of mutations in genes involved in twitching motility, cell-to-cell signalling and stationary phase gene expression. Appl. Environ. Microbiol 2002, 68, 2008–2017.
[57]
Arevalo-Ferro, C.; Reil, G.; G?rg, A.; Eberl, L.; Riedel, K. Biofilm formation of Pseudomonas putida IsoF: The role of quorum sensing as assessed by proteomics. Syst. Appl. Microbiol 2005, 28, 87–114.
[58]
Labatte, M.; Queck, S.Y.; Koh, K.S; Rice, S.A.; Givskov, M.; Kjelleberg, S. Quorum sensing-controlled biofilm development in Serratia liquefaciens MG1. J. Bacteriol 2004, 186, 692–698.
[59]
Lynch, M.J.; Swift, S.; Kirke, D.F.; Keevil, C.W.; Dodd, C.E.R.; Williams, P. The regulation of biofilm development by quorum sensing in Aeromonas hydrophila. Environ. Microbiol 2002, 4, 18–28.
[60]
Huber, B.; Riedel, K.; Hentzer, M.; Heydorn, A.; Gotschlich, A.; Givskov, M.; Molin, S.; Eberl, L. The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology 2001, 147, 2517–2528.
[61]
Jackson, C.R. Changes in community properties. Turing microbial succession. Oikos 2003, 101, 444–448.
[62]
Schembri, M.A.; Christianesen, G.; Klemm, P. FimH-mediated autoaggregation of E. coli. Mol. Microbiol 2001, 41, 1419–1430.
[63]
Nikitina, V.E; Ponomareva, E.G.; Alenkina, S.A.; Konnova, S.A. The role of cell-surface lectins in the aggregation of azospirilla. Microbiology 2001, 70, 471–476.
[64]
Chandler, D.E.; Gumbart, J.; Stack, J.D.; Chipot, C.; Schulten, K. Membrane curvature induced by aggregates of LH2s and monomeric LH1s. Biophys. J 2009, 97, 2978–2984.
[65]
Puskas, A.; Greenberg, E.P.; Kaplan, S.; Schaefer, A.L. A quorum sensing system in the free-living photosynthetic bacterium Rhodobacter sphaeroides. J. Bacteriol 1997, 179, 7530–7537.
[66]
Chandler, J.R.; Breck, J.R.; Duerkop, A.; Hinz, A.; Eoin West, T.; Herman, J.P.; Churchill, M.E.A.; Skerrett, S.J.; Greenberg, P.E. Mutational analysis of Burkholderia thailandensis quorum sensing and self-aggregation. J. Bacteriol 2009, 191, 5901–5909.
[67]
Atkinson, S.; Throup, J.P.; Stewart, G.S.; Williams, P. A hierarchical quorum-sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping. Mol. Microbiol 1999, 33, 1267–1277.
[68]
Zhang, Z.; Pierson, L.S., III. A second quorum-sensing system regulates cell surface properties but not phenazine antibiotic production in Pseudomonas aureofaciens. Appl. Environ. Microbiol 2001, 67, 4305–4315.
[69]
Liu, X.; Jia, J.; Popat, R.; Ortori, C.A.; Li, J.; Diggle, S.P.; Gao, K.; Cámara, M. Characterisation of two quorum sensing systems in the endophytic Serratia plymuthica strain G3: Differential control of motility and biofilm formation according to life-style. BMC Microbiol 2011, 11, doi:10.1186/1471-2180-11-26.
[70]
Bogino, P.; Banchio, E.; Rinaudi, L.; Cerioni, G.; Bonfiglio, C.; Giordano, W. Peanut (Arachis hypogaea) response to inoculation with Bradyrhizobium sp. in soils of Argentina. Ann. Appl. Biol 2006, 148, 207–212.