全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2012 

Dual Super-Systolic Core for Real-Time Reconstructive Algorithms of High-Resolution Radar/SAR Imaging Systems

DOI: 10.3390/s120302539

Keywords: super-systolic, parallel computing, remote sensing, FPGA

Full-Text   Cite this paper   Add to My Lib

Abstract:

A high-speed dual super-systolic core for reconstructive signal processing (SP) operations consists of a double parallel systolic array (SA) machine in which each processing element of the array is also conceptualized as another SA in a bit-level fashion. In this study, we addressed the design of a high-speed dual super-systolic array (SSA) core for the enhancement/reconstruction of remote sensing (RS) imaging of radar/synthetic aperture radar (SAR) sensor systems. The selected reconstructive SP algorithms are efficiently transformed in their parallel representation and then, they are mapped into an efficient high performance embedded computing (HPEC) architecture in reconfigurable Xilinx field programmable gate array (FPGA) platforms. As an implementation test case, the proposed approach was aggregated in a HW/SW co-design scheme in order to solve the nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) from a remotely sensed scene. We show how such dual SSA core, drastically reduces the computational load of complex RS regularization techniques achieving the required real-time operational mode.

References

[1]  Martínez, D.R.; Bond, R.A.; Vai, M.M. High Performance Embedded Computing Handbook: A Systems Perspective; CRC Press: Boca Raton, FL, USA, 2008.
[2]  Levesque, J.; Wagenbreth, G. High Performance Computing Programming and Applications; CRC Press: Boca Raton, FL, USA, 2011.
[3]  Henderson, F.M.; Lewis, A.V. Principles and Applications of Imaging Radar, Manual of Remote Sensing, 3rd ed ed.; Wiley: New York, NY, USA, 1998.
[4]  Barrett, H.H.; Myers, K.J. Foundations of Image Science; Wiley: New York, NY, USA, 2004.
[5]  Chang, C.-I. Hyperspectral Imaging: Techniques for Spectral Detectionand Classification; Kluwer Academic/Plenum: New York, NY, USA, 2003.
[6]  Shkvarko, Y.V. Unifying regularization and Bayesian estimation methods for enhanced imaging with remotely sensed data—Part I: Theory. IEEE Trans. Geosci. Remote Sens 2004, 42, 923–931, doi:10.1109/TGRS.2003.823281.
[7]  Shkvarko, Y.V. Unifying regularization and Bayesian estimation methods for enhanced imaging with remotely sensed data—Part II: Implementation and performance issues. IEEE Trans. Geosci. Remote Sens 2004, 42, 932–940, doi:10.1109/TGRS.2003.823279.
[8]  Plaza, A.; Valencia, D.; Plaza, J.; Martinez, P. Commodity cluster-based parallel processing of hyperspectral imagery. J. Parallel Distrib. Comp 2006, 66, 345–358, doi:10.1016/j.jpdc.2005.10.001.
[9]  Wei, S.-C.; Huang, B. GPU acceleration of predictive partitioned vector quantization for ultraspectral sounder data compression. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. (JSTARS) 2011, 4, 677–682, doi:10.1109/JSTARS.2011.2132117.
[10]  Govett, M.W.; Middlecoff, J.; Henderson, T. Running the NIM next-generation weather model on GPUs. Proceedings of the 10th IEEE/ACM International Conference Cluster, Cloud and Grid Computing (CCGrid), Melbourne, Australia, 17–20 May 2010; 1, pp. 792–796.
[11]  Aanaes, H.; Sveinsson, J.R.; Nielsen, A.A.; Bovith, T.; Benediktsson, J.A. Integration of spatial spectral information for resolution enhancement in hyperspectral images. IEEE Trans. Geosci. Remote Sens 2008, 46, 1336–1346, doi:10.1109/TGRS.2008.916475.
[12]  Shkvarko, Y.V. Unifying experiment design and convex regularization techniques for enhanced imaging with uncertain remote sensing data––Part I: Theory. IEEE Trans. Geosci. Remote Sens 2010, 48, 82–95, doi:10.1109/TGRS.2009.2027695.
[13]  Shkvarko, Y.V. Unifying experiment design and convex regularization techniques for enhanced imaging with uncertain remote sensing data—Part II: Adaptive implementation and performance issues. IEEE Trans. Geosci. Remote Sens 2010, 48, 96–111, doi:10.1109/TGRS.2009.2027696.
[14]  De Maio, A.; Farina, A.; Foglia, G. Knowledge-aided Bayesian radar detectors and their application to live data. IEEE Trans. Aerosp. Electr. Syst 2010, 46, 170–183, doi:10.1109/TAES.2010.5417154.
[15]  Shkvarko, Y.; Perez-Meana, H.; Castillo-Atoche, A. Enhanced radar imaging in uncertain environment: A descriptive experiment design regularization approach. Int. J. Navig. Obs 2008, 2008, 1–11.
[16]  Castillo Atoche, A.; Torres, D.; Shkvarko, Y.V. Experiment design regularization-based hardware/software co-design for real-time enhanced imaging in uncertain remote sensing environment. EURASIP J. Adv. Signal Process 2010, 2010, 1–21.
[17]  Castillo Atoche, A.; Shkvarko, Y.V.; Torres, D.; Perez, H.M. Convex regularization-based hardware/software co-design for real-time enhancement of remote sensing imagery. Int. J. Real Time Image Process 2009, 4, 261–272, doi:10.1007/s11554-009-0115-3.
[18]  Shkvarko, Y.V.; Castillo Atoche, A.; Torres, D. Near real time enhancement of geospatial imagery via systolic implementation of neural network-adapted convex regularization techniques. Pattern Recognit. Lett 2011, 32, 2197–2205, doi:10.1016/j.patrec.2011.05.018.
[19]  Castillo Atoche, A.; Torres, D.; Shkvarko, Y.V. Towards real time implementation of reconstructive signal processing algorithms using systolic arrays coprocessors. J. Syst. Archit. (JSA) 2010, 56, 327–339, doi:10.1016/j.sysarc.2010.05.004.
[20]  Shkvarko, Y.V.; Shmaliy, Y.S.; Jaime-Rivas, R.; Torres-Cisneros, M. System fusion in passive sensing using a modified Hopfield network. J. Frankl. Inst 2000, 338, 405–427.
[21]  Castillo Atoche, A.; Estrada Lopez, J.; Pedro Mu?oz, P.; Soto Aguilar, S. High-Speed VLSI Architectures Based on Massively Parallel Processor Arrays for Real Time Remote Sensing Applications; Intech: Rijeka, Croatia, 2011; pp. 133–152.
[22]  Fixed-Point ToolboxTM User’s Guide. MATLAB. Available online: http://www.mathworks.com/ (accessed on 3 December 2011).
[23]  López-Vallejo, M.; López, J.C. On the hardware-software partitioning problem: System modeling and partitioning techniques. ACM Trans. Des. Autom. Electron. Syst 2003, 8, 269–297, doi:10.1145/785411.785412.
[24]  Jin, W.; Zhang, C.N.; Li, H. Mapping multiple algorithms into a reconfigurable systolic array. Proceedings of Canadian Conference on Electrical and Computer Engineering (CCECE 2008), Niagara Falls, ON, Canada, 4–7 May 2008; pp. 1187–1192.
[25]  Marquardt, A.; Betz, V.; Rose, J. Speed and area tradeoffs in cluster-based FPGA architectures. IEEE Trans. Very Large Scale Integr. Syst 2000, 8, 84–93, doi:10.1109/92.820764.
[26]  Hauck, S.; DeHon, A. Reconfigurable Computing: The Theory and Practice of FPGA-Based Computation; Morgan Kaufmann Publishers: Burlington, MA, USA, 2008.
[27]  Kung, S.Y. VLSI Array Processors; Prentice Hall: Upper Saddle River, NJ, USA, 1988.
[28]  Parhi, K.K. VLSI Digital Signal Processing Systems; John Wiley & Sons: Hoboken, NJ, USA, 1999.
[29]  Dutta, H.; Hannig, F.; Teich, J. Controller synthesis for mapping partitioned programs on array architectures. Proceedings of the 19th International Conference on Architecture of Computing Systems—ARCS ’2006, Frankfurt/Main, Germany, 13–16 March 2006.
[30]  Barnerjee, U. Loop Transformation for Restructuring Compilers: The Foundations; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993.
[31]  Moldovan, D.I. On the design of algorithms for VLSI systolic arrays. Proc. IEEE 1983, 71, 113–120, doi:10.1109/PROC.1983.12532.
[32]  Greco, J.; Cieslewski, G.; Jacobs, A.; Troxel, I.A.; George, A.D. Hardware/software interface for high-performance space computing with FPGA coprocessors. Proceedings of IEEE Aerospace Conference (AECON ’06), Big Sky, MT, USA, July 2006.
[33]  Yang, C.T.; Chang, C.L.; Hung, C.C.; Wu, F. Using a Beowulf cluster for a remote sensing application. Proceedings of the 22nd Asian Conference on Remote Sensing, Singapore, 5–9 November 2001.
[34]  Ponomaryov, V.I. Real-time 2D–3D filtering using order statistics based algorithms. J. Real-Time Image Process 2007, 1, 173–194, doi:10.1007/s11554-007-0021-5.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133