全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2011 

Robust and Cooperative Image-Based Visual Servoing System Using a Redundant Architecture

DOI: 10.3390/s111211885

Keywords: image-based visual servoing, robotics, control

Full-Text   Cite this paper   Add to My Lib

Abstract:

The reliability and robustness of image-based visual servoing systems is still unsolved by the moment. In order to address this issue, a redundant and cooperative 2D visual servoing system based on the information provided by two cameras in eye-in-hand/eye-to-hand configurations is proposed. Its control law has been defined to assure that the whole system is stable if each subsystem is stable and to allow avoiding typical problems of image-based visual servoing systems like task singularities, features extraction errors, disappearance of image features, local minima, etc. Experimental results with an industrial robot manipulator based on Schunk modular motors to demonstrate the stability, performance and robustness of the proposed system are presented.

References

[1]  Chaumette, F.; Hutchinson, S. Visual servo control. Part I: Basic approaches. IEEE Robot. Automat. Mag 2006, 13, 82–90.
[2]  Chaumette, F.; Hutchinson, S. Visual servo control. Part II: Advanced approaches. IEEE Robot. Automat. Mag 2007, 14, 109–118.
[3]  Hutchinson, S.A.; Hager, G.D.; Corke, P.I. A tutorial on visual servo control. IEEE Trans. Robot. Automat 1996, 12, 651–670.
[4]  Mezouar, Y.; Chaumette, F. Path planning for robust image-based control. IEEE Trans. Robot. Automat 2002, 534–549.
[5]  Park, J.S.; Chung, M.J. Path planning with uncalibrated stereo rig for image-based visual servoing under large pose discrepancy. IEEE Trans. Robot. Automat 2003, 19, 250–258.
[6]  Mezouar, Y.; Chaumette, F. Optimal camera trajectory with image-based control. IEEE Trans. Robot. Automat 2002, 22, 781–804.
[7]  Morel, G.; Zanne, P.; Plestan, F. Robust visual servoing: Bounding the task function tracking errors. IEEE Trans. Control Syst. Tech 2005, 13, 998–1009.
[8]  Chesi, G. Visual servoing path-planning via homogeneous forms and LMI optimizations. IEEE Trans. Robot. Autom 2009, 25, 281–291.
[9]  Kazemi, M.; Gupta, K.; Mehrandezh, M. Global path planning for robust visual servoing in complex environments. Proceedings of ICRA 2009: IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 326–332.
[10]  Chesi, G.; Shen, T. Conferring robustness to path-planning for image-based control. IEEE Trans. Control Syst. Tech 2011, doi:10.1109/TCST.2011.2157346.
[11]  Mezouar, Y.; Chaumette, F. Path planning for robust image-based control. IEEE Trans. Robot. Autom 2002, 18, 534–549.
[12]  Benhimane, S.; Malis, E. Vision-based control with respect to planar and non-planar objects using a zooming camera. Proceedings of ICRA 2003: IEEE International Conference on Advanced Robotics, Coimbra, Portugal, 30 June–3 July 2003.
[13]  Garcia-Aracil, N.; Malis, E.; Aracil, R.; Perez-Vidal, C. Continuous visual servoing despite the changes of visibility in image features. IEEE Trans. Robot 2005, 21, 1214–1220.
[14]  Perez-Vidal, C.; Gracia, L.; Garcia-Aracil, N.; Cervera, E. Visual control of robots with delayed images. Adv. Robot 2009, 23, 725–745.
[15]  Marchand, E.; Comport, A.; Chaumette, F. Improvements in robust 2D visual servoing. Proceedings of ICRA 2004: IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, 26 April–1 May 2004; pp. 745–750.
[16]  Kragic, D.; Christensen, H. Cue integration for visual servoing. IEEE Trans. Robot 2001, 17, 19–26.
[17]  Kosmopoulos, D.I. Robust Jacobian matrix estimation for image-based visual servoing. Robot. Comput. Integr. Manufact 2011, 27, 82–87.
[18]  Malis, E.; Mezouar, Y.; Rives, P. Cue integration for visual servoing. IEEE Trans. Robot 2010, 26, 112–120.
[19]  Aracil, R.; Garcia-Aracil, N.; Perez, C.; Paya, L.; Sabater, J.M.; Azorin, J.M.; Jimenez, L.M. Robust image-based visual servoing system using a redundant architecture. Proceedings of 6th IFAC World Congress, Prague, Czech Republic, 4–8 July 2005.
[20]  Garcia-Aracil, N.; Perez, C.; Paya, L.; Neco, R.; Sabater, J.M.; Azorin, J.M. Avoiding visual servoing singularities using a cooperative control architecture. Proceedings of ICINCO(2) 2004: 1st International Conference on Informatics in Control, Automation and Robotics, Sedúbal, Portgual, 25–28 August 2004; pp. 162–168.
[21]  Marchand, E.; Hager, G. Dynamic sensor planning in visual servoing. Proceedings of ICRA 1998: IEEE International Conference on Robotics and Automation, Leuven, Belgium, 16–20 May 1998; 3, pp. 1988–1993.
[22]  Flandin, G.; Chaumette, F.; Marchand, E. Eye-in-hand/eye-to-hand cooperation for visual servoing. Proceedings of ICRA 2000: IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, 24–28 April 2000; 3, pp. 2741–2746.
[23]  Yoshihata, Y.; Watanabe, K.; Iwatani, Y.; Hashimoto, K. Multi-camera visual servoing of a micro helicopter under occlusions. Proceedings of IROS’07: IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October–2 November 2007; pp. 2615–2620.
[24]  Samson, C.; Le Borgne, M.; Espiau, B. Robot Control: The Task Function Approach, 1st ed.. Oxford Engineering Science Series; ed.; Clarendon Press: Oxford, UK, 1991; Volume 22.
[25]  DeMenthon, D.; Davis, L.S. Model-based object pose in 25 lines of code. Proceedings of European Conference on Computer Vision, Santa Margherita Ligure, Italy, 19–22 May 1992; pp. 335–343.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133