全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2011 

Sonic Anemometry to Measure Natural Ventilation in Greenhouses

DOI: 10.3390/s111009820

Keywords: sonic anemometry, greenhouse, ventilation, insect-proof screens

Full-Text   Cite this paper   Add to My Lib

Abstract:

The present work has developed a methodology for studying natural ventilation in Mediterranean greenhouses by means of sonic anemometry. In addition, specific calculation programmes have been designed to enable processing and analysis of the data recorded during the experiments. Sonic anemometry allows us to study the direction of the airflow at all the greenhouse vents. Knowing through which vents the air enters and leaves the greenhouse enables us to establish the airflow pattern of the greenhouse under natural ventilation conditions. In the greenhouse analysed in this work for Poniente wind (from the southwest), a roof vent designed to open towards the North (leeward) could allow a positive interaction between the wind and stack effects, improving the ventilation capacity of the greenhouse. The cooling effect produced by the mass of turbulent air oscillating between inside and outside the greenhouse at the side vents was limited to 2% (for high wind speed, uo ≥ 4 m s?1) reaching 36.3% when wind speed was lower (uo = 2 m s?1).

References

[1]  Boulard, T; Meneses, JF; Mermier, M; Papadakis, G. The mechanisms involved in the natural ventilation of greenhouses. Agric. For. Meteorol 1996, 79, 61–77, doi:10.1016/0168-1923(95)02266-X.
[2]  Kittas, C; Boulard, T; Mermier, M; Papadakis, G. Wind induced air exchange rates in a greenhouse tunnel with continuous side openings. J. Agric. Eng. Res 1996, 65, 37–49, doi:10.1006/jaer.1996.0078.
[3]  Pawlowski, A; Guzman, JL; Rodríguez, F; Berenguel, M; Sánchez, J; Dormido, S. Simulation of greenhouse climate monitoring and control with wireless sensor network and event-based control. Sensors 2009, 9, 232–252, doi:10.3390/s90100232. 22389597
[4]  Kittas, C; Boulard, T; Papadakis, G. Natural ventilation of a greenhouse with ridge and side openings: Sensitivity to temperature and wind effects. Trans. ASAE 1997, 40, 415–425.
[5]  Boulard, T; Baille, A. Modelling of air exchange rate in a greenhouse equipped with continuous roof vents. J. Agric. Eng. Res 1995, 61, 37–48, doi:10.1006/jaer.1995.1028.
[6]  Bruce, JM. Natural convection through openings and its applications to cattle building ventilation. J. Agric. Eng. Res 1978, 23, 151–167, doi:10.1016/0021-8634(78)90046-X.
[7]  Bruce, JM. Ventilation of a model livestock building by thermal buoyancy. Trans. ASAE 1982, 25, 1724–1726.
[8]  Morris, LG; Neale, FE. The Infra-Red Carbon Dioxide Gas Analyser and Its Use in Glasshouse Research. Technical Memorandum, number 99; National Institute of Agricultural Engineering: Silsoe, UK, 1954.
[9]  Sase, S; Takakura, T; Nara, N. Wind tunnel testing on airflow and temperature distribution of a naturally ventilated greenhouse. Acta Hortic 1984, 148, 329–336.
[10]  Lee, IB; Sase, S; Okushima, L; Ikeguchi, A; Choi, K; Yun, J. A wind tunnel study of natural ventilation for multi-span greenhouse scale models using two-dimensional particle image velocimetry (PIV). Trans. ASAE 2003, 46, 763–772.
[11]  Sase, S; Takakura, T; Nara, M. Wind tunnel testing on airflow and temperature distribution of a naturally ventilated greenhouse. Acta Hortic 1984, 148, 329–336.
[12]  Boulard, T; Feuilloley, P; Kittas, C. Natural ventilation performance of six greenhouse and tunnel types. J. Agric. Eng. Res 1997, 67, 249–266, doi:10.1006/jaer.1997.0167.
[13]  Papadakis, G; Mermier, M; Meneses, JF; Boulard, T. Measurement and analysis of air exchange rates in a greenhouse with continuous roof and side openings. J. Agric. Eng. Res 1996, 63, 219–228, doi:10.1006/jaer.1996.0023.
[14]  Okushima, L; Sase, S; Nara, M. A support system for natural ventilation design of greenhouses based on computacional aerodynamics. Acta Hortic 1989, 284, 129–136.
[15]  Kacira, M. Modeling Dynamic Air Exchanges for Naturally Ventilated Sawtooth Greenhouse DesignsPh.D. Dissertation. The Ohio State University, Wooster, OH, USA, 1996.
[16]  Mistriotis, A; Arcidiacono, C; Picudo, P; Bot, GPA; Scarascia-Mugnozza, G. Computacional analysis of ventilation in greenhouses at zero- and low-wind-speeds. Agric. For. Meteorol 1997, 88, 121–135, doi:10.1016/S0168-1923(97)00045-2.
[17]  Boulard, T; Haxaire, R; Lamrani, MA; Roy, JC; Jaffrin, A. Characterization and modelling of the air fluxes induced by natural ventilation in a greenhouse. J. Agric. Eng. Res 1999, 74, 135–144, doi:10.1006/jaer.1999.0442.
[18]  Molina-Aiz, FD; Fatnassi, H; Boulard, T; Roy, JC; Valera, DL. Comparison of finite element and finite volume methods for simulation of natural ventilation in greenhouses. Comput. Electron. Agric 2010, 72, 69–86, doi:10.1016/j.compag.2010.03.002.
[19]  Boulard, T; Kittas, C; Papadakis, G; Mermier, M. Pressure field and airflow at the opening of a naturally ventilated greenhouse. J. Agric. Eng. Res 1998, 71, 93–102, doi:10.1006/jaer.1998.0302.
[20]  Teitel, T; Tanny, J; Ben-Yakir, D; Barak, M. Airflow patterns through roof openings of a naturally ventilated greenhouse and their effect on insect penetration. Biosyst. Eng 2005, 92, 341–353, doi:10.1016/j.biosystemseng.2005.07.013.
[21]  Shilo, E; Teitel, M; Mahrer, Y; Boulard, T. Air-flow patterns and heat fluxes in roof-ventilated multi-span greenhouse with insect-proof screens. Agric. For. Meteorol 2004, 122, 3–20, doi:10.1016/j.agrformet.2003.09.007.
[22]  Teitel, M; Liran, O; Tanny, J; Barak, M. Wind driven ventilation of a mono-span greenhouse with a rose crop and continuous screened side vents and its effect on flow patterns and microclimate. Biosyst. Eng 2008, 101, 111–122, doi:10.1016/j.biosystemseng.2008.05.012.
[23]  Molina-Aiz, FD; Valera, DL; Pe?a, AA; Gil, JA; López, A. A study of natural ventilation in an almería-type greenhouse with insect screens by means of tri-sonic anemometry. Biosyst. Eng 2009, 104, 224–242, doi:10.1016/j.biosystemseng.2009.06.013.
[24]  Cebeci, T. Analysis of Turbulent Flows, 2nd ed ed.; Elsevier Science: San Diego, CA, USA, 2004.
[25]  Heber, AJ; Boon, CR; Peugh, MW. Air patterns and turbulence in an experimental livestock building. J. Agric. Eng. Res 1996, 64, 209–226, doi:10.1006/jaer.1996.0062.
[26]  Boulard, T; Wang, S; Haxaire, R. Mean and turbulent air flows and microclimatic patterns in an empty greenhouse tunnel. Agric. For. Meteorol 2000, 100, 169–181, doi:10.1016/S0168-1923(99)00136-7.
[27]  Hinze, JO. Turbulence; McGraw-Hill: New York, NY, USA, 1975.
[28]  Melikov, AK; Langkilde, G; Derbiszewski, B. Airflow characteristic in the occupied zone of rooms with displacement ventilation. ASHRAE Trans 1990, 96, 555–563.
[29]  Ouyang, Q; Dai, W; Li, H; Zhu, Y. Study on dynamic characteristics of natural and mechanical wind in built environment using espectral analisis. Build. Environ 2006, 41, 418–426, doi:10.1016/j.buildenv.2005.02.008.
[30]  Stull, RB. An Introduction to Boundary Layer Meteorology; Kluwer Academics Publishers: Dordrecht, The Netherlands, 1988.
[31]  López, A. Contribución al Conocimiento del Microclima de los Invernaderos Mediante Anemometría Sónica y Termografía. Contribution to the Knowledge of the Greenhouse Microclimate Using Sonic Anemometry and Infrared Thermography. Ph.D. Dissertation, Almería University, Almería, Spain, 2011. Available online: http://www.ual.es/personal/alm212/ (accessed on 10 October 2011).
[32]  Wang, S; Deltour, J. Theoretical study of natural ventilation flux in a single span greenhouse. Biotechnol. Agron. Soc. Environ 1998, 2, 256–263.
[33]  Bot, GPA. Greenhouse Climate: From Physical Processes to a Dynamic ModelPh.D. Dissertation. Agricultural University, Wageningen, The Netherlands, 1983.
[34]  Li, Y; Delsante, A. Natural ventilation induced by combined wind and thermal forces. Build. Environ 2001, 36, 59–71, doi:10.1016/S0360-1323(99)00070-0.
[35]  Molina-Aiz, FD. Simulación y Modelación de la Ventilación en Invernaderos de Almería mediante Dinámica de Fluidos Computacional. Simulation and Modellisation of Ventilation in Almería Greenhouses Using Computational Fluid DynamicsPh.D. Dissertation. Escuela de Ingenería, University of Almería, Almería, Spain, 2010.
[36]  Lee, I-B; Short, TH. Two-dimensional numerical simulation of natural ventilation in amulti-span greenhouse. Trans. ASAE 2000, 43, 745–753.
[37]  Boulard, T; Papadakis, G; Kittas, C; Mermier, M. Air flow and associated sensible heat exchanges in a naturally ventilated greenhouse. Agric. For. Meteorol 1997, 88, 111–119, doi:10.1016/S0168-1923(97)00043-9.
[38]  Tanny, J; Haijun, L; Cohen, S. Airflow characteristics, energy balance and eddy covariance measurements in a banana screenhouse. Agric. For. Meteorol 2006, 139, 105–118, doi:10.1016/j.agrformet.2006.06.004.
[39]  Tan-Atichat, J; Nagib, HM; Loehrke, RI. Interaction of free-stream turbulence with screens and grids: A balance between turbulence scales. J. Fluid Mech 1982, 114, 501–528, doi:10.1017/S0022112082000275.
[40]  Tanny, J; Haslavsky, V; Teitel, M. Airflow and heat flux through the vertical opening of buoyancy-induced naturally ventilated enclosures. Energy Build 2008, 40, 637–646, doi:10.1016/j.enbuild.2007.04.020.
[41]  Teitel, M. The effect of screened openings on greenhouse microclimate. Agric. For. Meteorol 2007, 143, 159–175, doi:10.1016/j.agrformet.2007.01.005.
[42]  Jiang, Y; Chen, Q. Buoyancy-driven single-sided natural ventilation in buildings with large openings. Int. J. Heat Mass Transf 2003, 46, 973–988, doi:10.1016/S0017-9310(02)00373-3.
[43]  Shang, XD; Xia, KQ. Scaling of the velocity power spectra in turbulent thermal convection. Phys Rev 2001, 64, 065301:1–065301:4.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133