Recent developments in aptamers have led to their widespread use in analytical and diagnostic applications, particularly for biosensing. Previous studies have combined aptamers as ligands with various sensors for numerous applications. However, merging the aptamer developments with guided mode resonance (GMR) devices has not been attempted. This study reports an aptasensor based home built GMR device. The 29-mer thrombin aptamer was immobilized on the surface of a GMR device as a recognizing ligand for thrombin detection. The sensitivity reported in this first trial study is 0.04 nm/μM for thrombin detection in the concentration range from 0.25 to 1 μM and the limit of detection (LOD) is 0.19 μM. Furthermore, the binding affinity constant (Ka) measured is in the range of 106 M?1. The investigation has demonstrated that such a GMR aptasensor has the required sensitivity for the real time, label-free, in situ detection of thrombin and provides kinetic information related to the binding.
References
[1]
Chen, L; Bao, CC; Yang, H; Li, D; Lei, C; Wang, T; Hu, HY; He, M; Zhou, Y; Cui, DX. A prototype of giant magnetoimpedance-based biosensing system for targeted detection of gastric cancer cells. Biosens. Bioelectron 2011, 26, 3246–3253, doi:10.1016/j.bios.2010.12.034. 21239159
[2]
Zhou, Y; Yang, H; Chen, L; Lei, C; Zhang, J; Li, D; Zhou, ZM; Bao, CC; Hu, HY; Chen, XA; et al. Giant magnetoimpedance-based microchannel system for quick and parallel genotyping of human papilloma virus type 16/18. Appl Phys Lett 2010, 97, 043702:1–043702:3.
Arntz, Y; Seelig, JD; Lang, HP; Zhang, J; Hunziker, P; Ramseyer, JP; Meyer, E; Hegner, M; Gerber, C. Label-free protein assay based on a nanomechanical cantilever array. Nanotechnology 2003, 14, 86–90, doi:10.1088/0957-4484/14/1/319.
[5]
Hasegawa, K; Ono, K; Yamada, M; Naiki, H. Kinetic modeling and determination of reaction constants of Alzheimer’s beta-amyloid fibril extension and dissociation using surface plasmon resonance. Biochemistry 2002, 41, 13489–13498, doi:10.1021/bi020369w. 12427009
[6]
Petrou, PS; Ricklin, D; Zavali, M; Raptis, I; Kakabakos, SE; Misiakos, K; Lambris, JD. Real-time label-free detection of complement activation products in human serum by white light reflectance spectroscopy. Biosens. Bioelectron 2009, 24, 3359–3364, doi:10.1016/j.bios.2009.04.040. 19481435
[7]
Ding, CF; Ge, Y; Lin, JM. Aptamer based electrochemical assay for the determination of thrombin by using the amplification of the nanoparticles. Biosens. Bioelectron 2010, 25, 1290–1294, doi:10.1016/j.bios.2009.10.017. 19914815
[8]
Hernandez-Rodriguez, NA; Correa, E; Contreras-Paredes, A. Thrombin: A new useful factor in the early diagnosis of pulmonary metastasis. Rev. Inst. Nal. Cancerol 1997, 43, 65–75.
[9]
Cai, H; Lee, TMH; Hsing, IM. Label-free protein recognition using an aptamer-based impedance measurement assay. Sens. Actuat. B 2006, 114, 433–437, doi:10.1016/j.snb.2005.06.017.
[10]
Lee, JA; Hwang, S; Kwak, J; Park, SI; Lee, SS; Lee, KC. An electrochemical impedance biosensor with aptamer-modified pyrolyzed carbon electrode for label-free protein detection. Sens. Actuat. B 2008, 129, 372–379, doi:10.1016/j.snb.2007.08.034.
[11]
Higuchi, A; Siao, YD; Yang, ST; Hsieh, PV; Fukushima, H; Chang, Y; Ruaan, RC; Chen, WY. Preparation of a DNA aptamer-Pt complex and its use in the colorimetric sensing of thrombin and anti-thrombin antibodies. Anal. Chem 2008, 80, 6580–6586, doi:10.1021/ac8006957. 18665606
[12]
Wang, YL; Li, D; Ren, W; Liu, ZJ; Dong, SJ; Wang, EK. Ultrasensitive colorimetric detection of protein by aptamer—Au nanoparticles conjugates based on a dot-blot assay. Chem Commun 2008, 2520–2522.
[13]
Zhang, ZX; Wang, ZJ; Wang, XL; Yang, XR. Magnetic nanoparticle-linked colorimetric aptasensor for the detection of thrombin. Sens. Actuat. B 2010, 147, 428–433, doi:10.1016/j.snb.2010.02.013.
[14]
Wang, WJ; Chen, CL; Qian, MX; Zhao, XS. Aptamer biosensor for protein detection based on guanine-quenching. Sens. Actuat. B 2008, 129, 211–217, doi:10.1016/j.snb.2007.07.125.
[15]
Hianik, T; Ostatna, V; Zajacova, Z; Stoikova, E; Evtugyn, G. Detection of aptamer-protein interactions using QCM and electrochemical indicator methods. Bioorg. Med. Chem. Lett 2005, 15, 291–295, doi:10.1016/j.bmcl.2004.10.083. 15603942
[16]
Jung, A; Gronewold, TMA; Tewes, M; Quandt, E; Berlin, P. Biofunctional structural design of SAW sensor chip surfaces in a microfluidic sensor system. Sens. Actuat. B 2007, 124, 46–52, doi:10.1016/j.snb.2006.11.040.
[17]
Schlensog, MD; Gronewold, TMA; Tewes, M; Famulok, M; Quandt, E. A Love-wave biosensor using nucleic acids as ligands. Sens. Actuat. B 2004, 101, 308–315, doi:10.1016/j.snb.2004.03.015.
[18]
Liao, W; Wei, F; Liu, D; Qian, MX; Yuan, G; Zhao, XS. FTIR-ATR detection of proteins and small molecules through DNA conjugation. Sens. Actuat. B 2006, 114, 445–450, doi:10.1016/j.snb.2005.06.021.
[19]
Zhu, HY; Suter, JD; White, IM; Fan, XD. Aptamer based microsphere biosensor for thrombin detection. Sensors 2006, 6, 785–795, doi:10.3390/s6080785.
[20]
Luppa, PB; Sokoll, LJ; Chan, DW. Immunosensors—principles and applications to clinical chemistry. Clin. Chim. Acta 2001, 314, 1–26, doi:10.1016/S0009-8981(01)00629-5. 11718675
[21]
Wawro, D; Tibuleac, S; Magnusson, R; Liu, H. Optical fiber endface biosensor based on resonances in dielectric waveguide gratings. Proc. SPIE 2000, 3911, 86–94.
[22]
Kikuta, H; Maegawa, N; Mizutani, A; Iwata, K; Toyota, H. Refractive index sensor with a guided-mode resonant grating filter. Proc. SPIE 2001, 4416, 219–222.
[23]
Cunningham, B; Li, P; Lin, B; Pepper, J. Colorimetric resonant reflection as a direct biochemical assay technique. Sens. Actuat. B 2002, 81, 316–328, doi:10.1016/S0925-4005(01)00976-5.
[24]
Ellington, AD; Szostak, JW. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818–822, doi:10.1038/346818a0. 1697402
[25]
Robertson, DL; Joyce, GF. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded-DNA. Nature 1990, 344, 467–468, doi:10.1038/344467a0. 1690861
[26]
Tuerk, C; Gold, L. Systematic evolution of ligands by exponential enrichment—RNA ligands to bacteriophage-T4 DNA-polymerase. Science 1990, 249, 505–510, doi:10.1126/science.2200121. 2200121
[27]
Jenison, RD; Gill, SC; Pardi, A; Polisky, B. High-resolution molecular discrimination by RNA. Science 1994, 263, 1425–1429, doi:10.1126/science.7510417. 7510417
[28]
Tombelli, S; Minunni, A; Mascini, A. Analytical applications of aptamers. Biosens. Bioelectron 2005, 20, 2424–2434, doi:10.1016/j.bios.2004.11.006. 15854817
[29]
Maehashi, K; Matsumoto, K. Label-free electrical detection using carbon nanotube-based biosensors. Sensors 2009, 9, 5368–5378, doi:10.3390/s90705368. 22346703
Moharam, MG; Gaylord, TK. Rigorous coupled-wave analysis of planar-grating diffraction. J. Opt. Soc. Am 1981, 71, 811–818, doi:10.1364/JOSA.71.000811.
[32]
Abdulhalim, I. Biosensing configurations using guided wave resonant structures. In Optical Waveguide Sensing and Imaging; Bock, WJ, Gannot, I, Tanev, S, Eds.; Springer: Berlin, Germany, 2008; pp. 211–228.
[33]
Choi, CJ; Cunningham, BT. A 96-well microplate incorporating a replica molded microfluidic network integrated with photonic crystal biosensors for high throughput kinetic biomolecular interaction analysis. Lab Chip 2007, 7, 550–556, doi:10.1039/b618584c. 17476372
[34]
Bock, LC; Griffin, LC; Latham, JA; Vermaas, EH; Toole, JJ. Selection of single-stranded-DNA molecules that bind and inhibit human thrombin. Nature 1992, 355, 564–566, doi:10.1038/355564a0. 1741036
[35]
Tasset, DM; Kubik, MF; Steiner, W. Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. J. Mol. Biol 1997, 272, 688–698, doi:10.1006/jmbi.1997.1275. 9368651
[36]
Tsiang, M; Jain, AK; Dunn, KE; Rojas, ME; Leung, LLK; Gibbs, CS. Functional mapping of the surface residues of human thrombin. J. Biol. Chem 1995, 270, 16854–16863, doi:10.1074/jbc.270.28.16854. 7622501
[37]
Abdulhalim, I. Optimized guided mode resonant structure as thermooptic sensor and liquid crystal tunable filter. Chin. Opt. Lett 2009, 7, 667–670, doi:10.3788/COL20090708.0667.
[38]
Krasnykov, O; Auslender, M; Abdulhalim, I. Optimizing the guided mode resonance structure for optical sensing in water. Phys. Express 2001, 1, 183–190.
[39]
Johnson, DJD; Adams, TE; Li, W; Huntington, JA. Crystal structure of wild-type human thrombin in the Na+-free state. Biochem. J 2005, 392, 21–28, doi:10.1042/BJ20051217. 16201969
[40]
Cras, JJ; Rowe-Taitt, CA; Nivens, DA; Ligler, FS. Comparison of chemical cleaning methods of glass in preparation for silanization. Biosens. Bioelectron 1999, 14, 683–688, doi:10.1016/S0956-5663(99)00043-3.
[41]
Vilar, MR; do Rego, AMB; Ferraria, AM; Jugnet, Y; Nogues, C; Peled, D; Naaman, R. Interaction of self-assembled monolayers of DNA with electrons: HREELS and XPS studies. J. Phys. Chem. B 2008, 112, 6957–6964, doi:10.1021/jp8008207. 18489141
[42]
Li, XX; Shen, LH; Zhang, DD; Qi, HL; Gao, Q; Ma, F; Zhang, CX. Electrochemical impedance spectroscopy for study of aptamer-thrombin interfacial interactions. Biosens. Bioelectron 2008, 23, 1624–1630, doi:10.1016/j.bios.2008.01.029. 18339536
[43]
Pollet, J; Delport, F; Janssen, KPF; Jans, K; Maes, G; Pfeiffer, H; Wevers, M; Lammertyn, J. Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions. Biosens. Bioelectron 2009, 25, 864–869, doi:10.1016/j.bios.2009.08.045. 19775884
[44]
Chang, Y; Liao, SC; Higuchi, A; Ruaan, RC; Chu, C; Chen, WY. A highly stable nonbiofouling surface with well-packed grafted zwitterionic polysulfobetaine for plasma protein repulsion. Langmuir 2008, 24, 5453–5458, doi:10.1021/la800228c. 18399670