Long-Term Monitoring of Fresco Paintings in the Cathedral of Valencia (Spain) Through Humidity and Temperature Sensors in Various Locations for Preventive Conservation
We describe the performance of a microclimate monitoring system that was implemented for the preventive conservation of the Renaissance frescoes in the apse vault of the Cathedral of Valencia, that were restored in 2006. This system comprises 29 relative humidity (RH) and temperature sensors: 10 of them inserted into the plaster layer supporting the fresco paintings, 10 sensors in the walls close to the frescoes and nine sensors measuring the indoor microclimate at different points of the vault. Principal component analysis was applied to RH data recorded in 2007. The analysis was repeated with data collected in 2008 and 2010. The resulting loading plots revealed that the similarities and dissimilarities among sensors were approximately maintained along the three years. A physical interpretation was provided for the first and second principal components. Interestingly, sensors recording the highest RH values correspond to zones where humidity problems are causing formation of efflorescence. Recorded data of RH and temperature are discussed according to Italian Standard UNI 10829 (1999).
References
[1]
Camuffo, D. Microclimate for Cultural Heritage; Elsevier: Amsterdam, The Netherlands, 1998.
[2]
Bernardi, A. Microclimate in the British Museum, London. MMC 1990, 9, 169–182.
[3]
Bernardi, A; Camuffo, D. Microclimate in the Chiericati Palace Municipal Museum, Vicenza. MMC 1995, 14, 5–18.
[4]
Camuffo, D; Bernardi, A; Sturaro, G; Valentino, A. The microclimate inside the Pollaiolo and Botticelli rooms in the Uffizi Gallery, Florence. J. Cult. Herit 2002, 3, 155–161, doi:10.1016/S1296-2074(02)01171-8.
[5]
Tabunschikov, Y; Brodatch, M. Indoor air climate requirements for Russian churches and cathedrals. Indoor Air 2004, 14, 168–174, doi:10.1111/j.1600-0668.2004.00285.x. 15330784
[6]
Camuffo, D; Sturaro, G; Valentino, A. Thermodynamic exchanges between the external boundary layer and the indoor microclimate at the basilica of Santa Maria Maggiore, Rome, Italy: The problem of conservation of ancient works of art. Bound. Layer Meteor 1999, 92, 243–262, doi:10.1023/A:1002026711404.
[7]
Vuerich, E; Malaspina, F; Barazutti, M; Georgiadis, T; Nardino, M. Indoor measurements of microclimate variables and ozone in the church of San Vincenzo (Monastery of Bassano Romano–Italy): A pilot study. Microchem. J 2008, 88, 218–223, doi:10.1016/j.microc.2007.11.014.
[8]
Loupa, G; Charpantidou, E; Kioutsioukis, I; Rapsomanikis, S. Indoor microclimate, ozone and nitrogen oxides in two medieval churches in Cyprus. Atmos. Environ 2006, 40, 7457–7466, doi:10.1016/j.atmosenv.2006.07.015.
[9]
Brimblecombe, P; Blades, N; Camuffo, D; Sturaro, G; Valentino, A; Gysels, K; Van Grieken, R; Busse, HJ; Kim, O; Ulrych, U; Wieser, M. The indoor environment of a modern museum building, the Sainsbury Centre for Visual Arts, Norwich, UK. Indoor Air 1999, 9, 146–164, doi:10.1111/j.1600-0668.1999.t01-1-00002.x. 10439553
[10]
Camuffo, D; Brimblecombe, P; Van Grieken, R; Busse, HJ; Sturaro, G; Valentino, A; Bernardi, A; Blades, N; Shooter, D; De Bock, L; Gysels, K; Wieser, M; Kim, O. Indoor air quality at the Correr Museum, Venice, Italy. Sci. Total Environ 1999, 236, 135–152, doi:10.1016/S0048-9697(99)00262-4. 10535149
[11]
Camuffo, D; Van Grieken, R; Busse, HJ; Sturaro, G; Valentino, A; Bernardi, A; Blades, N; Shooter, D; Gysels, K; Deutsch, F; Wieser, M; Kim, O; Ulrych, U. Environmental monitoring in four European museums. Atmos. Environ 2001, 35, S127–S140, doi:10.1016/S1352-2310(01)00088-7.
[12]
Gysels, K; Delalieux, F; Deutsch, F; Van Grieken, R. Indoor environment and conservation in the Royal Museum of Fine Arts, Antwerp, Belgium. J. Cult. Herit 2004, 5, 221–230, doi:10.1016/j.culher.2004.02.002.
[13]
Sturaro, G; Camuffo, D; Brimblecombe, P; Van Grieken, R; Busse, HJ; Bernardi, A; Valentino, A; Blades, N; Gysels, K; Deutsch, F; Wieser, M; Buczolits, S. Multidisciplinary environmental monitoring at the Kunsthistorisches Museum, Vienna. J. Trace Microprobe Tech 2005, 21, 273–294.
[14]
Camuffo, D. Indoor dynamic climatology: Investigations on the interactions between walls and indoor environment. Atmos. Environ 1983, 17, 1803–1809, doi:10.1016/0004-6981(83)90188-9.
[15]
Camuffo, D; Pagan, E; Bernardi, A; Becherini, F. The impact of heating, lighting and people in re-using historical buildings: A case study. J. Cult. Herit 2004, 5, 409–416, doi:10.1016/j.culher.2004.01.005.
[16]
Camuffo, D; Bernardi, A. Study of the microclimate of the Hall of the Giants in the Carrara Palace in Padova. Stud. Conserv 1995, 40, 237–249, doi:10.2307/1506498.
[17]
Camuffo, D; Bernardi, A. The microclimate of Leonardo’s Last Supper. Bollettino Geofisico 1991, 14, 1–75.
[18]
Camuffo, D; Bernardi, A. The microclimate of the Sistine Chapel. Eur. Cult. Herit. Newslett. Res 1995, 9, 7–33.
[19]
Marías, F. Frescoes of the cathedral of Valencia. FMR 2007, 22, 49–72.
[20]
Bernardi, A; Todorov, V; Hiristova, J. Microclimatic analysis in St. Stephan’s church, Nessebar, Bulgaria after interventions for the conservation of frescoes. J. Cult. Herit 2000, 1, 281–286, doi:10.1016/S1296-2074(00)01084-0.
[21]
García-Diego, F-J; Zarzo, M. Microclimate monitoring by multivariate statistical control: The renaissance frescoes of the Cathedral of Valencia (Spain). J. Cult. Herit 2010, 11, 339–344, doi:10.1016/j.culher.2009.06.002.
[22]
Corgnati, SP; Filippi, M. Assessment of thermo-hygrometric quality in museums: Method and in-field application to the “Duccio di Buoninsegna” exhibition at Santa Maria della Scala (Sirena, Italy). J. Cult. Herit 2010, 11, 345–349, doi:10.1016/j.culher.2009.05.003.
[23]
Del Vescovo, D; Fregolent, A. Assessment of fresco detachments through a non-invasive acoustic method. J. Sound Vib 2005, 284, 1015–1031, doi:10.1016/j.jsv.2004.07.011.
[24]
Maxim Integrated Products. Guidelines for Reliable Long Line 1-Wire? Networks. Application Note 148; 2008. Available online: www.maxim-ic.com/an148 (accessed on 5 September 2011).
[25]
Maxim Integrated Products. Advanced 1-Wire Network Driver. Application Note 244; 2003. Available online: www.maxim-ic.com/an244 (accessed on 5 September 2011).
[26]
Maxim Integrated Products; Linke, B. Choosing the Right 1-Wire? Master for Embedded Applications. Application Note 4206; 2008. Available online: www.maxim-ic.com/an4206 (accessed on 5 September 2011).
[27]
Matsuguchi, M; Yoshida, A; Kuroiwa, T; Ogura, T. Depression of a capacitive-type humidity sensor’s drift by introducing across-linked structure in the sensing polymer. Sens. Actuat. B Chem 2004, 102, 97–101, doi:10.1016/j.snb.2003.12.061.
[28]
Padfield, T. Condensation in the Walls of Humidified Buildings. Available online: http://www.conservationphysics.org/condens/condens1.php (accessed on 5 September 2011).
[29]
Arnold, A; Zehnder, K. Monitoring wall paintings affected by soluble salts. In The Conservation of Wall Paintings, 2nd ed; Cather, S, Ed.; Courtauld Institute of Art and the Getty Conservation Institute: London, UK, 1996; pp. 103–136.
[30]
Millán González, MC; Curiel Esparza, J; Ribelles Albors, I; Pérez Miralles, J. Primeros estudios analíticos. In Los ángeles músicos de la cathedral de Valencia Estudios previos, 2nd ed; Pérez García, MC, Ed.; Generalitat Valenciana: Valencia, Spain, 2006; pp. 285–292.
[31]
Zarzo, M; Martí, P. Modeling the variability of solar radiation data among weather stations by means of principal components analysis. Appl. Energ 2011, 88, 2775–2784, doi:10.1016/j.apenergy.2011.01.070.
[32]
Ricardo, D; Qin, SJ; Thomas, FE; McAvoy, TJ. Use of principal component analysis for sensor fault identification. Comput. Chem. Eng 1996, 20, 713–718, doi:10.1016/0098-1354(96)00128-7.
[33]
Zhu, D; Bai, J; Yang, SX. A multi-fault diagnosis method for sensor systems based on principle component analysis. Sensors 2010, 10, 241–253. 22315537