A micromachined electrostatically suspended six-axis accelerometer, with a square plate as proof mass housed by a top stator and bottom stator, is presented. The device structure and related techniques concerning its operating principles, such as calculation of capacitances and electrostatic forces/moments, detection and levitation control of the proof mass, acceleration measurement, and structural parameters design, are described. Hybrid MEMS manufacturing techniques, including surface micromachining fabrication of thin film electrodes and interconnections, integration fabrication of thick nickel structures about 500 μm using UV-LIGA by successful removal of SU-8 photoresist mold, DRIE of silicon proof mass in thickness of 450 μm, microassembly and solder bonding, were employed to fabricate this prototype microdevice. A levitation experiment system for the fabricated microaccelerometer chip is introduced, and levitation results show that fast initial levitation within 10 ms and stable full suspension of the proof mass have been successfully demonstrated.
References
[1]
Touboul, P.; Foulon, B.; Willemenot, E. Electrostatic space accelerometers for present and future missions. Acta Astronaut 1999, 45, 605–617, doi:10.1016/S0094-5765(99)00132-0.
[2]
Racca, G.D.; McNamara, P.W. The LISA pathfinder mission: Tracing Einstein’s geodesics in space. Space Sci. Rev 2010, 151, 159–181, doi:10.1007/s11214-009-9602-x.
[3]
Hudson, D.; Chhun, R.; Touboul, P. Development status of the differential accelerometer for the MICROSCOPE mission. Adv. Space Res 2007, 39, 307–314, doi:10.1016/j.asr.2005.10.040.
[4]
Houlihan, R.; Kraft, M. Modeling of an accelerometer based on a levitated proof mass. J. Micromech. Microeng 2002, 12, 493–503.
[5]
Kraft, M.; Farooqui, M.M.; Evans, A.G.R. Modelling and design of an electrostatically levitated disk for inertial sensing applications. J. Micromech. Microeng 2001, 11, 423–427, doi:10.1088/0960-1317/11/4/324.
[6]
Lu, J.-C.; Lin, P.-C. State derivation of a 12-axis gyroscope-free inertial measurement unit. Sensors 2011, 11, 3145–3162, doi:10.3390/s110303145. 22163791
[7]
Takeda, N. Ball Semiconductor Technology and Its Application to MEMS. Proceedings of 13th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Miyazaki, Japan, 23–27 January 2000; pp. 11–16.
[8]
Toda, R.; Takeda, N.; Murakoshi, T.; Nakamura, S.; Esashi, M. Electrostatically Levitated Spherical 3-axis Accelerometer. Proceedings of 15th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, NV, USA, 20–24 January 2002; pp. 710–713.
[9]
Cui, F.; Chen, W.Y.; Zhang, W.P.; Xiao, Q.J.; Ma, G.Y.; Liu, W. Design and fabrication of an electrostatically suspended microgyroscope using UV-LIGA technology. Microsyst. Technol 2009, 15, 1885–1896, doi:10.1007/s00542-009-0924-0.
[10]
Damrongsak, B.; Kraft, M.; Rajgopal, S.; Mehregany, M. Design and fabrication of a micromachined electrostatically suspended gyroscope. Proc. IMechE C J. Mech. Eng. Sci 2008, 222, 53–63, doi:10.1243/09544062JMES665.
Nakamura, S.; Tochigi, Y. MEMS Inertial Sensor Toward Higher Accuracy & Multi-Axis Sensing. Proceedings of 4th IEEE Conference on Sensors, Irvine, CA, USA, 31 October–3 November 2005; pp. 939–942.
[13]
Lorenz, H.; Despont, M.; Renaud, P. High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS. Sens. Actuat. A Phys 1998, 64, 33–39, doi:10.1016/S0924-4247(98)80055-1.
[14]
Liu, J.; Cai, B.; Zhu, J.; Ding, G.; Zhao, X.; Yang, C.; Chen, D. Process research of high aspect ratio microstructure using SU-8 resist. Microsyst. Technol 2004, 10, 265–268, doi:10.1007/s00542-002-0242-2.
[15]
Xiao, Q.; Chen, W.; Li, S.; Cui, F.; Zhang, W. Modeling and simulation of levitation control for a micromachined electrostatically suspended gyroscope. Microsyst. Technol 2010, 16, 357–366, doi:10.1007/s00542-009-0927-x.
[16]
Han, F.T.; Wang, L.; Wu, Q.P.; Liu, Y.F. Performance of an active electric bearing for rotary micromotors. J. Micromech. Microeng 2011, 21, 085027, doi:10.1088/0960-1317/21/8/085027.
[17]
Han, F.T.; Gao, Z.; Li, D.; Wang, Y. Nonlinear compensation of active electrostatic bearings supporting a spherical rotor. Sens. Actuat. A Phys 2005, 119, 177–186, doi:10.1016/j.sna.2004.08.030.
[18]
Strong, F.W.; Skinner, J.L.; Talin, A.; Dentinger, P.M.; Tien, N.C. Electrical Breakdown Response for Multiple-Gap MEMS Structures. Proceedings of IEEE 44th Annual International Reliability Physics Symposium Proceedings, San Jose, CA, USA, 26–30 March 2006; pp. 421–426.
Yazdi, N.; Ayazi, F.; Najafi, K. Micromachined inertial sensors. Proc. IEEE 1998, 86, 1640–1659, doi:10.1109/5.704269.
[23]
Yang, G.; Gainesa, J.A. A supervisory wafer-Level 3D microassembly system for hybrid MEMS fabrication. J. Intell. Rob. Syst 2003, 37, 43–68, doi:10.1023/A:1023982907874.
[24]
Christenson, T.R.; Guckel, H.; Skrobis, K.J.; Klein, J. Micromechanics for actuators. Proc. SPIE 1994, 2220, 39–47.
[25]
Cui, F.; Chen, W.; Zhang, W.; Qin, Z.; Ma, G.; Xiao, Q.; Wu, X.; Liu, W. Optimization Design of an Electrostatically Suspended Microgyroscope. Proceedings of 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Xiamen, China, 20–23 January 2010; pp. 787–791.
[26]
Cui, F.; Chen, W.Y.; Zhao, X.L.; Jing, X.M.; Wu, X.S. Metal foundation construction to consolidate electroplated structures for successful removal of SU-8 mould. Electron. Lett 2006, 42, 690–691, doi:10.1049/el:20060751.
[27]
Iliescu, C.; Miao, J.; Tay, F.E.H. Stress control in masking layers for deep wet micromachining of Pyrex glass. Sens. Actuat. A Phys 2005, 117, 286–292, doi:10.1016/j.sna.2004.03.004.
[28]
Dentigenger, P.M.; Clift, W.M.; Goods, S.H. Removal of SU-8 photoresist for thick applications. Microelectron. Eng 2002, 61–62, 993–1000.
[29]
Niklaus, F.; Enoksson, P.; Kalvesten, E.; Stemme, G. Low-temperature full wafer adhesive bonding. J. Micromech. Microeng 2001, 11, 100–107, doi:10.1088/0960-1317/11/2/303.