As demand increases for ubiquitous network facilities, infrastructure-less and self-configuring systems like Mobile Ad hoc Networks (MANET) are gaining popularity. MANET routing security however, is one of the most significant challenges to wide scale adoption, with wormhole attacks being an especially severe MANET routing threat. This is because wormholes are able to disrupt a major component of network traffic, while concomitantly being extremely difficult to detect. This paper introduces a new wormhole detection paradigm based upon Traversal Time and Hop Count Analysis (TTHCA), which in comparison to existing algorithms, consistently affords superior detection performance, allied with low false positive rates for all wormhole variants. Simulation results confirm that the TTHCA model exhibits robust wormhole route detection in various network scenarios, while incurring only a small network overhead. This feature makes TTHCA an attractive choice for MANET environments which generally comprise devices, such as wireless sensors, which possess a limited processing capability.
References
[1]
Perkins, C.E.; Royer, E.M. Ad-Hoc On-Demand Distance Vector Routing. Proceedings of the Second IEEE Workshop on Mobile Computing Systems and Applications (WMCSA’99), New Orleans, LA, USA, 25–26 February 1999; pp. 90–100.
[2]
Johnson, D.B.; Maltz, D.A. Dynamic Source Routing in Ad Hoc Wireless Networks. In Mobile Computing; Imielinski, T., Korth, H. F., Eds.; Kluwer Academic Publishers: Norwell, MA., USA, 1996; Volume 353, pp. 153–181.
[3]
Zapata, M.G. Secure Ad Hoc On-Demand Distance Vector Routing. SIGMOBILE Mob. Comput. Commun. Rev 2002, 6, 106–107, doi:10.1145/581291.581312.
[4]
Hu, Y.; Perrig, A.; Johnson, D.B. Ariadne: A Secure On-Demand Routing Protocol for Ad Hoc Networks. Wirel. Netw 2005, 11, 21–38, doi:10.1007/s11276-004-4744-y.
[5]
Hu, Y.; Perrig, A.; Johnson, D.B. Packet Leashes: A Defense Against Wormhole Attacks in Wireless Networks. Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and Communications (INFOCOM’03), San Francisco, CA, USA, 1–3 April 2003; pp. 1976–1986.
[6]
Khabbazian, M.; Mercier, H.; Bhargava, V.K. Severity Analysis and Countermeasure for the Wormhole Attack in Wireless Ad Hoc Networks. IEEE Trans. Wirel. Commun 2009, 8, 736–745, doi:10.1109/TWC.2009.070536.
[7]
Khabbazian, M.; Mercier, H.; Bhargava, V.K. NIS02-1: Wormhole Attack in Wireless Ad Hoc Networks: Analysis and Countermeasure. Proceedings of the Global Telecommunications Conference (GLOBECOM '06), San Francisco, CA, USA, 27 November–1 December 2006; pp. 1–6.
[8]
Mahajan, V.; Natu, M.; Sethi, A. Analysis of Wormhole Intrusion Attacks in MANETS. Proceedings of the Military Communications Conference (MILCOM’08), San Diego, CA, USA, 17–19 November 2008; pp. 1–7.
[9]
Qian, L.; Song, N.; Li, X. Detecting and Locating Wormhole Attacks in Wireless Ad Hoc Networks Through Statistical Analysis of Multi-Path. Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC’05), New Orleans, LA, USA, 13–17 March 2005; pp. 2106–2111.
[10]
Su, M. WARP: A Wormhole-Avoidance Routing Protocol by Anomaly Detection in Mobile Ad Hoc Networks. Comput. Secur 2010, 29, 208–224, doi:10.1016/j.cose.2009.09.005.
[11]
Azer, M.A.; El-Kassas, S.M.; El-Soudani, M.S. Immuning Routing Protocols from the Wormhole Attack in Wireless Ad Hoc Networks. Proceedings of the 4th International Conference on Systems and Networks Communications (ICSNC’09), Porto, Portugal, 20–25 September 2009; pp. 30–36.
[12]
Khurana, S.; Gupta, N. FEEPVR: First End-to-End Protocol to Secure Ad Hoc Networks with Variable Ranges Against Wormhole Attacks. Proceedings of the 2nd International Conference on Emerging Security Information (SECURWARE ’08), Cap Esterel, France, 25–31 August 2008; pp. 74–79.
[13]
Gupta, N.; Khurana, S. SEEEP: Simple and Efficient End-to-End Protocol to Secure Ad Hoc Networks Against Wormhole Attacks. Proceedings of the 4th International Conference on Wireless and Mobile Communications (ICWMC ’08), Athens, Greece, 27 July–1 August 2008; pp. 13–18.
[14]
Chiu, H.S.; Lui, K.-S. DelPHI: Wormhole Detection Mechanism for Ad Hoc Wireless Networks. Proceedings of the 1st International Symposium on Wireless Pervasive Computing (ISWPC’06), Phuket, Thailand, 16–18 January 2006.
[15]
Choi, S.; Kim, D.-Y.; Lee, D.-H.; Jung, J.-I. WAP: Wormhole Attack Prevention Algorithm in Mobile Ad Hoc Networks. Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous and Trustworthy Computing (SUTC ’08), Taichung, Taiwan, 11–13 June 2008; pp. 343–348.
[16]
Tran, P.V.; Hung, L.X.; Lee, Y.; Lee, S.; Lee, H. TTM: An Efficient Mechanism to Detect Wormhole Attacks in Wireless Ad-Hoc Networks. Proceedings of the 4th IEEE Consumer Communications and Networking Conference (CCNC’07), Las Vegas, NV, USA, 11–13 January 2007; pp. 593–598.
[17]
Jen, S.; Laih, C.; Kuo, W. A Hop-Count Analysis Scheme for Avoiding Wormhole Attacks in MANET. Sensors 2009, 9, 5022–5039, doi:10.3390/s90605022. 22408566
[18]
Wibowo, S.B.; Klepal, M.; Pesch, D. Time of Flight Ranging Using Off-the-Self IEEE 802.11 Wi-Fi Tags. Proceedings of the International Conference on Positioning and Context-Awareness (PoCA’09), Antwerp, Belgium, 28 May 2009.
[19]
The Network Simulator—ns-2. Available online: http://www.isi.edu/nsnam/ns/ (accessed on 21 November 2011).