全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2011 

Real-Time Telemetry System for Amperometric and Potentiometric Electrochemical Sensors

DOI: 10.3390/s110908593

Keywords: electrochemical sensor, telemetry system, potentiostat, instrumentation amplifier

Full-Text   Cite this paper   Add to My Lib

Abstract:

A real-time telemetry system, which consists of readout circuits, an analog-to-digital converter (ADC), a microcontroller unit (MCU), a graphical user interface (GUI), and a radio frequency (RF) transceiver, is proposed for amperometric and potentiometric electrochemical sensors. By integrating the proposed system with the electrochemical sensors, analyte detection can be conveniently performed. The data is displayed in real-time on a GUI and optionally uploaded to a database via the Internet, allowing it to be accessed remotely. An MCU was implemented using a field programmable gate array (FPGA) to filter noise, transmit data, and provide control over peripheral devices to reduce power consumption, which in sleep mode is 70 mW lower than in operating mode. The readout circuits, which were implemented in the TSMC 0.18-μm CMOS process, include a potentiostat and an instrumentation amplifier (IA). The measurement results show that the proposed potentiostat has a detectable current range of 1 nA to 100 μA, and linearity with an R2 value of 0.99998 in each measured current range. The proposed IA has a common-mode rejection ratio (CMRR) greater than 90 dB. The proposed system was integrated with a potentiometric pH sensor and an amperometric nitrite sensor for in vitro experiments. The proposed system has high linearity (an R2 value greater than 0.99 was obtained in each experiment), a small size of 5.6 cm × 8.7 cm, high portability, and high integration.

References

[1]  Lin, C-Y; Lai, Y-H; Balamurugan, A; Vittal, R; Lin, C-W; Ho, K-C. Electrode modified with a composite film of ZnO nanorods and Ag nanoparticles as a sensor for hydrogen peroxide. Talanta 2010, 82, 340–347, doi:10.1016/j.talanta.2010.04.047. 20685476
[2]  Bard, AJ; Faulkner, LR. Electrochemical Methods: Fundamentals and Applications, 2nd ed ed.; Wiley: New York, NY, USA, 2001.
[3]  Estrela, P; Paul, D; Li, P; Keighley, SD; Migliorato, P; Laurenson, S; Ferrigno, PK. Label-free detection of protein interactions with peptide aptamers by open circuit potential measurement. Electrochim. Acta 2008, 53, 6489–6496, doi:10.1016/j.electacta.2008.04.036.
[4]  Huang, C-Y; Syu, M-J; Chang, Y-S; Chang, C-H; Chou, T-C; Liu, B-D. A portable potentiostat for the bilirubin-specific sensor prepared from molecular imprinting. Biosens. Bioelectron 2007, 22, 1694–1699, doi:10.1016/j.bios.2006.07.036. 16962762
[5]  Rocchitta, G; Migheli, R; Dedola, S; Calia, G; Desole, MS; Miele, E; Lowry, JP; O’Neill, RD; Serra, PA. Development of a distributed, fully automated, bidirectional telemetry system for amperometric microsensor and biosensor applications. Sens. Actuat. B 2007, 126, 700–709, doi:10.1016/j.snb.2007.04.019.
[6]  Mahapatra, PK; Singh, M; Pandey, L; Singla, ML. Electro-chemical system for the determination of degree of unsaturation of edible oils. Food Chem 2011, 126, 1505–1507, doi:10.1016/j.foodchem.2010.11.109.
[7]  Liao, W-Y; Lee, Y-G; Huang, C-Y; Lin, H-Y; Weng, Y-C; Chou, T-C. Telemetric electrochemical sensor. Biosens. Bioelectron 2004, 20, 482–490, doi:10.1016/j.bios.2004.02.014. 15494229
[8]  Reay, RJ; Kounaves, SP; Kovacs, GTA. An integrated CMOS potentiostat for miniaturized electroanalytical instrumentation. Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 16–18 February 1994; pp. 162–163.
[9]  Genov, R; Stanacevic, M; Naware, M; Cauwenberghs, G; Thakor, NV. 16-Channel integrated potentiostat for distributed neurochemical sensing. IEEE Trans. Circuits Syst 2006, 53, 2371–2376, doi:10.1109/TCSI.2006.884425.
[10]  Spinelli, EM; Pallas-Areny, R; Mayosky, MA. AC-coupled front-end for biopotential measurements. IEEE Trans. Biomed. Eng 2003, 50, 391–395, doi:10.1109/TBME.2003.808826. 12669996
[11]  Yazicioglu, RF; Merken, P; Puers, R; van Hoof, C. A 60 μW 60 nV/root Hz readout front-end for portable biopotential acquisition systems. IEEE J. Solid-State Circ 2007, 42, 1100–1110, doi:10.1109/JSSC.2007.894804.
[12]  Harrison, RR; Charles, C. A low-power low-noise CMOS amplifier for neural recording applications. IEEE J. Solid-State Circ 2003, 38, 958–965, doi:10.1109/JSSC.2003.811979.
[13]  Ng, KA; Chan, PK. A CMOS analog front-end IC for portable EEG/ECG monitoring applications. IEEE Trans. Circuits Syst 2005, 52, 2335–2347, doi:10.1109/TCSI.2005.854141.
[14]  Hogervorst, R; Tero, JP; Eschauzier, RGH; Huijsing, JH. A compact power-efficient 3 V CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries. IEEE J. Solid-State Circ 1994, 29, 1505–1513, doi:10.1109/4.340424.
[15]  Yao, K-W; Lin, W-C; Gong, C-SA; Lin, Y-Y; Shiue, M-T. A differential difference amplifier for neural recording system with tunable low-frequency cutoff. Proceedings of the IEEE International Conference on Electron Devices and Solid-State Circuits, Hong Kong, 8–10 December 2008; pp. 1–4.
[16]  Hogervorst, R; Tero, JP; Huijising, JH. Compact CMOS constant-gm rail-to-rail input stage with gm-control by an electronic zener diode. IEEE J. Solid-State Circ 1996, 31, 1035–1040, doi:10.1109/4.508218.
[17]  Hasan, SMR. Stability analysis and novel compensation of a CMOS current-feedback potentiostat circuit for electrochemical sensors. IEEE Sens. J 2007, 7, 814–824, doi:10.1109/JSEN.2007.893236.
[18]  Stanacevic, M; Murari, K; Rege, A; Cauwenberghs, G; Thakor, NV. VLSI potentiostat array with oversampling gain modulation for wide-range neurotransmitter sensing. IEEE Trans. Biomed. Circ. Syst 2007, 1, 63–72, doi:10.1109/TBCAS.2007.893176.
[19]  Lambrechts, M; Sansen, W. Biosensors: Microelectrochemical Devices; Institute of Physics Publishing: Bristol, UK, 1992.
[20]  Fidler, JC; Penrose, WR; Bobis, JP. A potentiostat based on a voltage-controlled current source for use with amperometric gas sensors. IEEE Trans. Instrum. Meas 1992, 41, 308–310, doi:10.1109/19.137366.
[21]  Chung, W-Y; Paglinawan, AC; Wang, Y-H; Kuo, T-T. A 600 μW readout circuit with potentiostat for amperometric chemical sensors and glucose meter applications. Proceeding of the IEEE Conference on Electron Devices and Solid-State Circuits, Tainan, Taiwan, 20–22 December 2007; pp. 1087–1090.
[22]  Busoni, L; Carla, M; Lanzi, L. A comparison between potentiostatic circuits with grounded work or auxiliary electrode. Rev. Sci. Instrum 2002, 73, 1921–1923, doi:10.1063/1.1463715.
[23]  Jichun, Z; Trombly, N; Mason, A. A low noise readout circuit for integrated electrochemical biosensor arrays. Proceedings of the IEEE Sensors, Vienna, Austria, 24–27 October 2004; pp. 36–39.
[24]  Ahmadi, MM; Jullien, GA. Current-mirror-based potentiostats for three-electrode amperometric electrochemical sensors. IEEE Trans. Circuits Syst 2009, 56, 1339–1348, doi:10.1109/TCSI.2008.2005927.
[25]  Ahmadi, MM; Jullien, GA. A very low power CMOS potentiostat for bioimplantable applications. Proceedings of the 5th International Workshop on System-on-Chip for Real-Time Applications, Banff, AB, Canada, 20–24 July 2005; pp. 184–189.
[26]  Greef, R. Instruments for use in electrode process research. J. Phys. E-Sci. Instrum 1978, 11, 1–12, doi:10.1088/0022-3735/11/1/001.
[27]  Iniewski, K. VLSI Circuits for Biomedical Applications, 1st ed ed.; Artech House: Boston, MA, USA, 2008.
[28]  Smith, SW. The Scientist and Engineer’s Guide to Digital Signal Processing, 2nd ed ed.; California Technical Publishing: San Diego, CA, USA, 1999.
[29]  Martin, SM; Gebara, FH; Strong, TD; Brown, RB. A fully differential potentiostat. IEEE Sens. J 2009, 9, 135–142, doi:10.1109/JSEN.2008.2011085.
[30]  Lin, C-Y; Vasantha, VS; Ho, K-C. Detection of nitrite using poly(3,4-ethylenedioxythiophene) modified SPCEs. Sens. Actuat. B 2009, 140, 51–57, doi:10.1016/j.snb.2009.04.047.
[31]  Liao, W-Y; Chou, T-C. Fabrication of a planar-form screen-printed solid electrolyte modified Ag/AgCl reference electrode for application in a potentiometric biosensor. Anal. Chem 2006, 78, 4219–4223, doi:10.1021/ac051562+. 16771553

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133