LiDAR (Light Detection And Ranging) systems are capable of providing 3D positional and spectral information (in the utilized spectrum range) of the mapped surface. Due to systematic errors in the system parameters and measurements, LiDAR systems require geometric calibration and radiometric correction of the intensity data in order to maximize the benefit from the collected positional and spectral information. This paper presents a practical approach for the geometric calibration of LiDAR systems and radiometric correction of collected intensity data while investigating their impact on the quality of the derived products. The proposed approach includes the use of a quasi-rigorous geometric calibration and the radar equation for the radiometric correction of intensity data. The proposed quasi-rigorous calibration procedure requires time-tagged point cloud and trajectory position data, which are available to most of the data users. The paper presents a methodology for evaluating the impact of the geometric calibration on the relative and absolute accuracy of the LiDAR point cloud. Furthermore, the impact of the geometric calibration and radiometric correction on land cover classification accuracy is investigated. The feasibility of the proposed methods and their impact on the derived products are demonstrated through experimental results using real data.
References
[1]
Shimada, M. Radiometric and geometric calibration of JERS-1 SAR. Adv. Space Res 1996, 17, 79–88.
[2]
Small, D; Holecz, F; Meier, E; Nüesch, D; Barmettler, A. Geometric and radiometric calibration of RADARSAT Images. Proceedings of Geomatics in the Era of RADARSAT, Ottawa, Canada, 24–30 May 1997. [CD-ROM].
[3]
Riegler, G; Stolz, R; Mauser, W. Geometric and radiometric corrections of ERS SAR data for biomass estimation of meadows in rugged terrain. Proceedings of SPIE, EUROPTO Series, Barcelona, Spain, September 1998.
[4]
Shimada, M; Isoguchi, O; Tadono, T; Isono, K. PALSAR radiometric and geometric calibration. IEEE Trans. Geosci. Remote Sens 2009, 47, 3915–3931.
[5]
Loew, A; Mauser, W. Generation of geometrically and radiometrically terrain corrected SAR image products. Remote Sens. Environ 2007, 106, 337–349.
[6]
Kilian, J; Haala, N; Englich, M. Capture and evaluation of airborne laser scanner data. Int. Arch. Photogramm. Remote Sens 1996, 31, 383–388.
[7]
Crombaghs, M; De Min, E; Bruegelmann, R. On the adjustment of overlapping strips of laser altimeter height data. Int. Arch. Photogramm. Remote Sens 2000, 33, 230–237.
[8]
Maas, HG. Method for measuring height and planimetry discrepancies in airborne laserscanner data. Photogramm Eng Remote Sens 2002, 68, 933–940.
[9]
Filin, S; Vosselman, G. Adjustment of airborne laser altimetry strips. Int. Arch. Photogramm. Remote Sens 2004, 35, 285–289.
[10]
Filin, S. Calibration of Spaceborne and Airborne Laser Altimeters Using Natural SurfacesPh.D. Dissertation, The Ohio-State University, Columbus, OH, USA. 2001.
[11]
Skaloud, J; Lichti, D. Rigorous approach to bore-sight self-calibration in airborne laser scanning. ISPRS J. Photogramm. Remote Sens 2006, 61, 47–59.
[12]
Friess, P. Toward a rigorous methodology for airborne laser mapping. Proceedings of EuroCOW, Castelldefels, Spain, January 2006. [CD-ROM].
[13]
Burman, H. Calibration and Orientation of Airborne Image and Laser Scanner Data Using GPS and INSPh.D. Thesis, Royal Institute of Technology, Stockholm, Sweden. 2000.
[14]
Toth, CK. Calibrating airborne lidar systems. Proceedings of ISPRS Commission II Symposium, Xi’an, China, August 2002; pp. 475–480.
[15]
Morin, KW. Calibration of Airborne Laser ScannersM.Sc. Thesis, University of Calgary, Alberta, Canada. 2002.
[16]
Coren, F; Sterzai, P. Radiometric correction in laser scanning. Int. J. Remote Sens 2006, 27, 3097–3104.
[17]
H?fle, B; Pfeifer, N. Correction of laser scanning intensity data: Data and model-driven approaches. ISPRS J. Photogramm. Remote Sens 2007, 62, 415–433.
[18]
Kaasalainen, S; Hyypp?, H; Kukko, A; Litkey, P; Ahokas, E; Hyypp?, J; Lehner, H; Jaakkola, A; Suomalainen, J; Akuj?rvi, A; et al. Radiometric calibration of LIDAR Intensity with commercially available reference targets. IEEE Trans. Geosci. Remote Sens 2009, 47, 588–598.
[19]
Kaasalainen, S; Krooks, A; Kukko, A; Kaartinen, H. Radiometric calibration of terrestrial laser scanners with external reference targets. Remote Sens 2009, 1, 144–158.
[20]
Vain, A; Kaasalainen, S; Pyysalo, U; Krooks, A; Litkey, P. Use of naturally available reference targets to calibrate airborne laser scanning intensity data. Sensors 2009, 9, 2780–2796.
[21]
Kaasalainen, M; Kaasalainen, S. Aperture size effects on backscatter intensity measurements in Earth and space remote sensing. J. Opt. Soc. Am 2008, 25, 1142–1146.
[22]
Vain, A; Yu, X; Kaasalainen, S; Hyypp?, J. Correcting airborne laser scanning intensity data for automatic gain control effect. IEEE Geosci. Remote Sens. Lett 2010, 7, 511–514.
[23]
Schenk, T. Modeling and Analyzing Systematic Errors in Airborne Laser Scanners. Technical Report in Photogrammetry No 19; Ohio State University: Columbus, OH, USA, 2001; pp. 1–42.
[24]
El-Sheimy, N; Valeo, C; Habib, A. Digital Terrain Modeling: Acquisition, Manipulation and Applications, 1st ed ed.; Artech House Remote Sensing Library: Boston, MA, USA, 2005; p. 256.
[25]
Mikhail, EM; Ackerman, F. Observations and Least Squares; University Press of America: New York, NY, USA, 1976.
[26]
Habib, A; Bang, K; Kersting, AP; Lee, DC. Error budget of lidar systems and quality control of the derived data. Photogramm Eng Remote Sens 2009, 75, 1093–1108.
[27]
Habib, A; Kersting, AP; Bang, K; Lee, DC. Alternative methodologies for the internal quality control of parallel LiDAR strips. IEEE Trans. Geosci. Remote Sens 2010, 48, 221–236.
[28]
Shin, S; Habib, A; Ghanma, M; Kim, C; Kim, E. Algorithms for Multi-Sensor and Multi-Primitive Photogrammetric Triangulation. ETRI Journal 2007, 29, 411–420.
[29]
Baltsavias, EP. Airborne laser scanning: Basic relations and formulas. ISPRS J. Photogramm. Remote Sens 1999, 54, 199–214.
[30]
Shaker, A; Yan, WY; El-Ashmawy, N. The effects of laser reflection angle on radiometric correction of airborne LiDAR intensity data. Proceedings of ISPRS Workshop Laser Scanning, Calgary, Canada, August 2011. [CD-ROM]; 2011.
[31]
Yan, WY; Shaker, A; Habib, A; Kersting, AP. Improving classification accuracy of airborne LiDAR intensity data by geometric calibration and radiometric correction. ISPRS J. Photogramm. Remote Sens. submitted.
[32]
Koch, KR. Parameter Estimation and Hypothesis Testing In Linear Models, 1st ed ed.; Springer-Verlag New York: Inc: New York, NY, USA, 1988; p. 378.