全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2011 

A High-Precision Micropipette Sensor for Cellular-Level Real-Time Thermal Characterization

DOI: 10.3390/s110908826

Keywords: micropipette, thermal sensor, cellular-level, laser

Full-Text   Cite this paper   Add to My Lib

Abstract:

We report herein development of a novel glass micropipette thermal sensor fabricated in a cost-effective manner, which is capable of measuring steady thermal fluctuation at spatial resolution of ~2 μm with an accuracy of ±0.01 °C. We produced and tested various micrometer-sized sensors, ranging from 2 μm to 30 μm. The sensor comprises unleaded low-melting-point solder alloy (Sn-based) as a core metal inside a pulled borosilicate glass pipette and a thin film of nickel coating outside, creating a thermocouple junction at the tip. The sensor was calibrated using a thermally insulated calibration chamber, the temperature of which can be controlled with an accuracy of ±0.01 °C, and the thermoelectric power (Seebeck coefficient) of the sensor was recorded from 8.46 to 8.86 μV/°C. We have demonstrated the capability of measuring temperatures at a cellular level by inserting our temperature sensor into the membrane of a live retinal pigment epithelium cell subjected to a laser beam with a focal spot of 6 μm. We measured transient temperature profiles and the maximum temperatures were in the range of 38–55 ± 0.5 °C.

References

[1]  Gavriloaia, GV; Hurduc, A; Ghimigean, A-M; Fumarel, R. Spatial-temperature high resolution map for early cancer diagnosis. Proc. SPIE 2009, 7171, 71710W.
[2]  Blask, DE; Sauer, LA; Dauchy, RT; Holowachuk, EW; Ruuhoff, MS; Kopff, HS. Melatonin inhibition of cancer growth in vivo involves supression of tumor fatty acid metabolism via melatonin receptor-mediated signal transduction events. Cancer Res 1999, 59, 4693–4701. 10493527
[3]  Helmy, A; Holdmann, M; Rizkalla, M. Application of thermography for non-invasive diagnosis of thyroid gland disease. IEEE Trans. Biomed. Eng 2008, 55, 1168–1175, doi:10.1109/TBME.2008.915731. 18334410
[4]  Mandel, M; Igambi, L; Bergendahl, J; Dodson, ML; Scheltgen, E. Correlation of melting temperature and cesium chloride buoyant density of bacterial deoxyribonucleic acid. J. Bacteriol 1970, 101, 333–338. 5413818
[5]  Wu, CC; Wu, FB. Microstructure and mechanical properties of magnetron co-sputtered Ni–Al coatings. Surf. Coat. Technol 2009, 204, 854–859, doi:10.1016/j.surfcoat.2009.09.019.
[6]  Majumdar, A. Scanning thermal microscopy. Annu. Rev. Mater. Sci 1999, 29, 505–585, doi:10.1146/annurev.matsci.29.1.505.
[7]  Wu, W; Shen, J; Banerjee, P; Zhou, S. Core-shell hybrid nanogels for integration of optical temperature-sensing, targeted tumor cell imaging, and combined chemo-photothermal treatment. Biomaterials 2010, 31, 7555–7566, doi:10.1016/j.biomaterials.2010.06.030. 20643481
[8]  Ladieu, F; Martin, P; Guizard, S. Measuring thermal effects in femtosecond laser-induced breakdown of dielectrics. Appl. Phys. Letts 2002, 81, 957–959, doi:10.1063/1.1498147.
[9]  Tian, Y; Wu, B; Anderson, M; Shin, Y. Laser-assisted milling of silicon nitride ceramics and inconel 718. J Manuf Sci Eng 2008, 130, 031013:1–031013:9.
[10]  Denton, ML; Foltz, MS; Noojin, G; Estlack, LE; Thomas, R; Rockwell, B. Determination of threshold average temperature for cell death in an in vitro retinal model using thermography. Invited paper in optical interactions with tissue and cells. Proc. SPIE 2009, 7175, 71750G.
[11]  Olsrud, J; Wirestam, R; Brockstedt, S; Nilsson, AMK; Tranberg, K-G; St?hlberg, F; Persson, BRR. MRI thermometry in phantoms by use of the proton resonance frequency shift method: Application to interstitial laser thermotherapy. Phys. Med. Biol 1998, 43, 2597, doi:10.1088/0031-9155/43/9/012. 9755948
[12]  Fish, G; Bouevitch, O; Kokotov, S; Lieberman, K; Palanker, D; Turovets, I; Lewis, A. Ultrafast response micropipette-based submicrometer thermocouple. Rev Sci. Instrum 1995, 66, 3300–3306, doi:10.1063/1.1145498.
[13]  Watanabe, MS; Kakuta, N; Mabuchi, K; Yamada, Y. Micro-Thermocouple Probe for Measurement of Cellular Thermal Responses. Proceedings of 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2005, Shanghai, China, 1–4 September 2005; pp. 4858–4861.
[14]  Wischnath, UF; Welker, J; Munzel, M; Kittel, A. The near-field scanning thermal microscope. Rev. Sci. Instrum 2008, 79, 073708, doi:10.1063/1.2955764. 18681709
[15]  Kim, S; Kim, KC; Kihm, KD. Near-field thermometry sensor based on the thermal resonance of a microcantilever in aqueous medium. Sensors 2007, 7, 3156–3165, doi:10.3390/s7123156.
[16]  Kakuta, N; Suzuki, T; Saito, T; Nishimura, H; Mabuchi, K. Measurement of Microscale Bio-Thermal Responses by Means of Micro-Thermocouple Probe. Proceedings 23rd Annual Intermnational Conference IEEE Engineering in Medicine and Biology Society; p. 3117.
[17]  White, A. Effect of pH on fluorescence of tyrosine, tryptophan and related compounds. Biochem. J 1959, 71, 217–220. 13628557
[18]  Chowdhury, PK; Ashby, KD; Datta, A; Petrich, JW. Effect of pH on the fluorescence and absorption spectra of hypericin in reverse micelles. Photochem. Photobiol 2000, 72, 612–618, doi:10.1562/0031-8655(2000)072<0612:EOPOTF>2.0.CO;2. 11107845
[19]  Hill, SA; Baxter, GW; Collins, SF; Grattan, KTV; Sun, T. Simultaneous strain-temperature measurement using fluorescence from Yb-doped silica fiber. Rev. Sci. Instrum 2000, 71, 2267–2269, doi:10.1063/1.1150439.
[20]  Hill, DE; Williams, L; Mah, G; Bradley, WL. The effect of physical vapor deposition parameters on the thermoelectric power of thin film Molybdenum-Nickel junctions. Thin Solid Films 1997, 40, 263–270.
[21]  Adamov, M; Perovic, B; Nenadovic, T. Electrical and structural properties of thin gold films obtained by vacuum evaporation and sputtering. Thin Solid Films 1974, 24, 89–100, doi:10.1016/0040-6090(74)90254-5.
[22]  Denton, ML; Foltz, MS; Estlack, LE; Stolarski, DJ; Noojin, GD; Thomas, R; Eikum, D; Rockwell, BA. Damage thresholds for exposure to NIR and blue lasers in an in vitro RPE cell system. Investig. Ophthalmol. Vis. Sci 2006, 47, 3065–3073, doi:10.1167/iovs.05-1066.
[23]  Choi, SR; Kim, D. Measurement of thermal properties of microfluidic samples using laser point heating thermometry. Thermochim. Acta 2007, 455, 11–15, doi:10.1016/j.tca.2006.11.035.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133