全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2011 

Use of a New Ziprasidone-Selective Electrode in Mixed Solvents and Its Application in the Analysis of Pharmaceuticals and Biological Fluids

DOI: 10.3390/s110908813

Keywords: ion-selective electrode, ziprasidone, mixed solvents, pharmaceuticals, urine, serum

Full-Text   Cite this paper   Add to My Lib

Abstract:

The construction and characterization of a new ion-selective electrode for the determination of the antipsychotic ziprasidone in mixed solvents is presented. The electrode contains a plasticized polymeric membrane based on a ziprasidone-tetraphenylborate ion-exchanger. The influence of membrane composition on the electrode response towards ziprasidone in hydroalcoholic solutions was studied. The electrode displayed a stable response in a 2:3 (v/v) methanol/water medium from a ziprasidone concentration of 3?×?10?6 M with a fast response time of less than 20 s. The electrode also showed good selectivity towards ziprasidone over common inorganic and organic compounds and several species with pharmacological activity. The electrode was successfully applied to the determination of ziprasidone in pharmaceuticals and human urine and serum.

References

[1]  Millard, JW; Alvarez-Nú?ez, FA; Yalkowsky, SH. Solubilization by cosolvents. Establishing useful constants for the log-linear model. Int. J. Pharm 2002, 245, 153–166.
[2]  Pungor, E; Toth, K; Klatsmanyl, PG; Izutsu, K. Applications of ion-selective electrodes in nonaqueous and mixed-solvents. Pure Appl. Chem 1983, 55, 2029–2065.
[3]  Coetzee, JF; Deshmukh, BK; Liao, CC. Applications of potentiometric ion sensors in the characterization of nonaqueous solvents. Chem. Rev 1990, 90, 827–835.
[4]  Jain, AK; Gupta, VK; Singh, LP. Neutral carrier and organic resin based membranes as sensors for uranyl ions. Anal. Proc 1995, 32, 263–266.
[5]  Jain, AK; Gupta, VK; Sahoo, BN; Singh, LP. Copper(II)-selective electrodes based on macrocyclic compounds. Anal. Proc 1995, 32, 99–101.
[6]  Srivastava, SK; Gupta, VK; Jain, S. A PVC-Based Benzo-15-Crown-5 membrane sensor for cadmium. Electroanalysis 1996, 8, 938–940.
[7]  Srivastava, SK; Gupta, VK; Jain, S. PVC-based 2,2,2-cryptand sensor for zinc ions. Anal. Chem 1996, 68, 1272–1275.
[8]  Jain, AK; Gupta, VK; Singh, LP; Khurana, U. Macrocycle based membrane sensors for the determination of cobalt(II) ions. Analyst 1997, 122, 583–586.
[9]  Gupta, VK; Jain, AK; Singh, LP; Khurana, U. Porphyrins as carrier in PVC based membrane potentiometric sensors for nickel(II). Anal. Chim. Acta 1997, 355, 33–41.
[10]  Gupta, VK; Mangla, R; Khurana, U; Kumar, P. Determination of uranyl ions using poly(vinyl chloride) based 4-tert-butylcalix[6]arene membrane sensor. Electroanalysis 1999, 11, 573–576.
[11]  Singh, AK; Panwar, A; Kumar, S; Baniwal, S. Chromium(III)-selective electrode based on a macrocyclic compound. Analyst 1999, 124, 521–525.
[12]  Gupta, VK; Kumar, P. Cadmium(II)-selective sensors based on dibenzo-24-crown-8 in PVC matrix. Anal. Chim. Acta 1999, 389, 205–212.
[13]  Gupta, VK; Mangla, R; Agarwal, S. Pb(II) selective potentiometric sensor based on 4-tert-butylcalix[4]arene in PVC matrix. Electroanalysis 2002, 14, 1127–1132.
[14]  Mittal, SK; Sharma, HK; Kumar, ASK. Samarium (III) selective membrane sensor based on tin (IV) boratophosphate. Sensors 2004, 4, 125–135.
[15]  Mittal, SK; Kumar, ASK; Sharma, HK. PVC-based dicyclohexano-18-crown-6 sensor for La(III) ions. Talanta 2004, 62, 801–805.
[16]  Moghimi, M; Bagherinia, MA; Arvand, M; Zanjanchi, MA. Polymeric membrane sensor for potentiometric determination of vanadyl ions. Anal. Chim. Acta 2004, 527, 169–175.
[17]  Jain, AK; Gupta, VK; Ganeshpure, PA; Raisoni, JR. Ni(II)-selective ion sensors of salen type Schiff base chelates. Anal. Chim. Acta 2005, 553, 177–184.
[18]  Arvand, M; Moghimi, AM; Afshari, A; Mahmoodi, N. Potentiometric membrane sensor based on 6-(4-nitrophenyl)-2,4-diphenyl-3,5-diaza-bicyclo[3.1.0]hex-2-ene for detection of Sn(II) in real samples. Anal. Chim. Acta 2006, 579, 102–108.
[19]  Jain, AK; Gupta, VK; Singh, LP; Raisoni, JR. A comparative study of Pb2+ selective sensors based on derivatized tetrapyrazole and calix[4]arene receptors. Electrochim. Acta 2006, 51, 2547–2553.
[20]  Gupta, VK; Singh, AK; Gupta, B. A cerium(III) selective polyvinyl chloride membrane sensor based on a Schiff base complex of N,N′-bis[2-(salicylideneamino)ethyl]ethane-1,2-diamine. Anal. Chim. Acta 2006, 575, 198–204.
[21]  Singh, AK; Gupta, VK; Gupta, B. Chromium(III) selective membrane sensors based on Schiff bases as chelating ionophores. Anal. Chim. Acta 2007, 585, 171–178.
[22]  Gupta, VK; Singh, AK; Gupta, B. Schiff bases as cadmium(II) selective ionophores in polymeric membrane electrodes. Anal. Chim. Acta 2007, 583, 340–348.
[23]  Gupta, VK; Jain, AK; Ishtaiwi, Z; Lang, H; Maheshwari, G. Ni2+ selective sensors based on meso-tetrakis-{4-[tris-(4-allyldimethylsilylphenyl)silyl]phenyl}porphyrin and (sal)(2)triene in poly(vinyl chloride) matrix. Talanta 2007, 73, 803–811.
[24]  Gupta, VK; Singh, AK; Pal, MK. Ni(II) selective sensors based on Schiff bases membranes in poly(vinyl chloride). Anal. Chim. Acta 2008, 624, 223–231.
[25]  Nakamura, T. Development and application of ion-selective electrodes in nonaqueous solutions. Anal. Sci 2009, 25, 33–40.
[26]  Gupta, VK; Ludwigb, R; Agarwal, S. Anion recognition through modified calixarenes: A highly selective sensor for monohydrogen phosphate. Anal. Chim. Acta 2005, 538, 213–218.
[27]  Jaina, AK; Gupta, VK; Singhb, LP; Srivastavac, P; Raisonia, JR. Anion recognition through novel C-thiophenecalix[4]resorcinarene: PVC based sensor for chromate ions. Talanta 2005, 65, 716–721.
[28]  Patil, SR; Rakshit, AK. Membrane electrode sensitive to a cationic surfactant in aquo-organic media. Anal. Chim. Acta 2004, 518, 87–91.
[29]  Dowle, CJ; Cooksey, BG; Mottaway, J; Campbell, WC. Development of ion-selective electrodes for use in the titration of ionic surfactants in mixed-solvent systems. Analyst 1987, 112, 1299–1302.
[30]  Fort, J. Celecoxib, a cox-2-specific inhibitor: The clinical data. Am. J. Orthop 1999, 28, 13–18.
[31]  Reddy, P; Rani, B; Babu, G; Rao, J. Spectrophotometric methods for the determination of ziprasidone hydrochloride monohydrate in bulk and capsules. Acta Ciencia Indica Chem 2005, 31, 223–225.
[32]  Srinubabu, G; Rani, B; Rao, JS. Spectrophotometric determination of Ziprasidone in pharmaceutical formulations. E-J. Chem 2006, 3, 9–12.
[33]  Chauhan, C; Choudhury, P. UV spectrophotometric determination of ziprasidone hydrochloride in pore and pharmaceutical formulation. Asian J. Chem 2007, 19, 819–820.
[34]  El-Sherif, ZA; El-Zeany, B; El-Houssini, OM; Rashed, MS; Aboul-Enein, HY. Stability indicating reversed-phase high-performance liquid chromatographic and thin layer densitometric methods for the determination of ziprasidone in bulk powder and in pharmaceutical formulations. Biomed. Chromatogr 2004, 18, 143–149.
[35]  Farin, C; Kremser, L; Raggi, M; Kenndler, E. Determination of ziprasidone in pharmaceutical formulations by capillary zone electrophoresis. J. Pharm. Biomed. Anal 2008, 46, 471–476.
[36]  Kul, D; Gumustas, M; Uslu, B; Ozkan, SA. Electroanalytical characteristics of antipsychotic drug ziprasidone and its determination in pharmaceuticals and serum samples on solid electrodes. Talanta 2010, 82, 286–295.
[37]  Janiszewski, JS; Fouda, HG; Cole, RO. Development and validation of a high-sensitivity assay for an antipsychotic agent, CP-88,059, with solid-phase extraction and narrow-bore highperformance liquid chromatography. J. Chromatogr. B 1995, 668, 133–139.
[38]  Suckow, RF; Fein, M; Correll, CU; Cooper, TB. Determination of ziprasidone using liquid chromatography with fluorescence detection. J. Chromatogr. B 2004, 799, 201–208.
[39]  Sachse, J; Haertter, S; Hiemke, C. Automated determination of ziprasidone by HPLC with column switching and spectrophotometric detection. Ther. Drug Monit 2005, 27, 158–162.
[40]  Aldirbashi, O; Aboul-Enein, H; Alodaib, A; Jacob, M; Rashed, M. Rapid liquid chromatography-tandem mass spectrometry method for quantification of ziprasidone in human plasma. Biomed. Chromatogr 2006, 20, 365–368.
[41]  Aravagiri, M; Marder, S; Pollock, B. Determination of ziprasidone in human plasma by liquid chromatography-electrospray tandem mass spectrometry and its application to plasma level determination in schizophrenia patients. J. Chromatogr. B 2007, 847, 237–244.
[42]  García, MS; Ortu?o, JA; Albero, MI; Cuartero, M. Application of a trazodone-selective electrode to pharmaceutical quality control and urine analyses. Anal. Bioanal. Chem 2009, 394, 1563–1567.
[43]  Hassouna, MEM; Elsuccary, SAA. PVC membrane electrode for the potentiometric determination of Ipratropium bromide using batch and flow injection techniques. Talanta 2008, 75, 1175–1183.
[44]  Koryta, J; Stulik, K. Ion-Selective Electrodes, 2nd ed ed.; Cambridge University Press: Cambridge, UK, 1983.
[45]  Senike, T; Hasegawa, Y. Solvent Extraction Chemistry Fundamentals and Applications; Marcel Dekker: New York, NY, USA, 1977.
[46]  Swartz, ME; Krull, IS. Analytical Method Development and Validation; Marcel Dekker: New York, NY, USA, 1997.
[47]  Gumustas, M; Ozkan, SA. The role of and the place of method validation in drug analysis using electroanalytical techniques. Open Anal. Chem. J 2011, 5, 1–21.
[48]  Umezawa, Y; Bühlmann, P; Umezawa, K; Tohda, K; Amemiya, S. Selectivity coefficients of ion-selective electrodes. Pure Appl. Chem 2000, 72, 1851–2082.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133