全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2011 

All-Optical Frequency Modulated High Pressure MEMS Sensor for Remote and Distributed Sensing

DOI: 10.3390/s111110615

Keywords: optical sensor, MEMS, Bragg grating

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present the design, fabrication and characterization of a new all-optical frequency modulated pressure sensor. Using the tangential strain in a circular membrane, a waveguide with an integrated nanoscale Bragg grating is strained longitudinally proportional to the applied pressure causing a shift in the Bragg wavelength. The simple and robust design combined with the small chip area of 1 × 1.8 mm2 makes the sensor ideally suited for remote and distributed sensing in harsh environments and where miniaturized sensors are required. The sensor is designed for high pressure applications up to 350 bar and with a sensitivity of 4.8 pm/bar (i.e., 350 ×105 Pa and 4.8 × 10?5 pm/Pa, respectively).

References

[1]  Fu, H.; Fu, J.; Qiao, X. High sensitivity fiber Bragg grating pressure difference sensor. Chinese Optics Lett 2004, 2, 621–623.
[2]  Wang, X.; Li, B.; Xiao, Z.; Lee, S.H.; Roman, H.; Russo, O.L.; Chin, K.K.; Farmer, K.R. An ultra-sensitive optical MEMS sensor for partial discharge detection. J. Micromech. Microeng 2005, 15, 521–527.
[3]  Wagner, D.; Frankenberger, J.; Deimel, P.P. Optical pressure sensor using two Mach-Zehnder interferometers for the TE and TM polarization. J. Micromech. Microeng 1994, 4, 35–39.
[4]  Liu, L.; Zhang, H.; Zhao, Q.; Liu, Y.; Li, F. Temperature-independent FBG pressure sensor with high sensitivity. Opt. Fiber Techn 2007, 13, 78–80.
[5]  Graham-Rowe, D. Sensors take the strain. Nature Photon 2007, 1, 307–309.
[6]  Fragiacomo, G.; Reck, K.; Lorenzen, L.; Thomsen, E.V. Novel designs for application specific MEMS pressure sensors. Sensors 2010, 10, 9541–9563.
[7]  Holgate, C. The transverse flexure of perforated aeolotropic plates. Proc. Roy. Soc. A Mathe. Phys. Eng. Sci 1946, 185, 50–69.
[8]  Boresi, A.P; Sidebottom, O.M. Advanced Mechanics of Materials; John Wiley & Sons: New York, NY, USA, 1985; pp. 474–479.
[9]  Landau, L.D.; Lifshitz, E.M. Theory of Elasticity; Butterworth-Heinemann: Oxford, UK, 1986; pp. 50–53.
[10]  Petersen, K.E. Silicon as a mechanical material. Proc. IEEE 1982, 70, 420–457.
[11]  Lin, L.; Yun, W. Design, optimization and fabrication of surface micromachined pressure sensors. Mechatronics 1998, 8, 505–519.
[12]  Pedersen, T.; Fragiacomo, G.; Hansen, O.; Thomsen, E.V. Highly sensitive micromachined capacitive pressure sensor with reduced hysteresis and low parasitic capacitance. Sens. Actuat. A Phys 2009, 154, 35–41.
[13]  Barlian, A.A.; Park, W.-T.; Mallon, J.R.; Rastegar, A.J.; Pruitt, B.L. Review: Semiconductor piezoresistance for microsystems. Proc. IEEE 2009, 97, 513–552.
[14]  Stoney, G.G. The tension of metallic films deposited by electrolysis. Proc. Roy. Soc. Lond 1909, 82, 172–175.
[15]  Eldada, L. Polymer integrated optics: Promise vs. practicality. Organic Photon. Mater. Dev. IV 2002, 4642, 11–22.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133