Radiometric calibration of airborne laser scanning (ALS) intensity data aims at retrieving a value related to the target scattering properties, which is independent on the instrument or flight parameters. The aim of a calibration procedure is also to be able to compare results from different flights and instruments, but practical applications are sparsely available, and the performance of calibration methods for this purpose needs to be further assessed. We have studied the radiometric calibration with data from three separate flights and two different instruments using external calibration targets. We find that the intensity data from different flights and instruments can be compared to each other only after a radiometric calibration process using separate calibration targets carefully selected for each flight. The calibration is also necessary for target classification purposes, such as separating vegetation from sand using intensity data from different flights. The classification results are meaningful only for calibrated intensity data.
References
[1]
Wehr, A.; Lohr, U. Airborne laser scanning—An introduction and overview. ISPRS J. Photogramm. Remote Sens 1999, 54, 68–82, doi:10.1016/S0924-2716(99)00011-8.
[2]
Morsdorf, F.; M?rell, A.; Koetz, B.; Cassagne, N.; Pimont, F.; Rigolot, E.; Allg?wer, B. Discrimination of vegetation strata in a multi-layered Mediterranean forest ecosystem using height and intensity information derived from airborne laser scanning. Remote Sens. Environ 2010, 114, 1403–1415, doi:10.1016/j.rse.2010.01.023.
[3]
Hopkinson, C.; Chasmer, L. Testing LiDAR models of fractional cover across multiple forest ecozones. Remote Sens. Environ 2009, 113, 275–288, doi:10.1016/j.rse.2008.09.012.
[4]
Eitel, J.U.H.; Vierling, L.A.; Long, D.S. Simultaneous measurements of plant structure and chlorophyll content in broadleaf saplings with a terrestrial laser scanner. Remote Sens. Environ 2010, 114, 2229–2237, doi:10.1016/j.rse.2010.04.025.
[5]
García, M.; Ria?o, D.; Chuvieco, E.; Danson, M.F. Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data. Remote Sens. Environ 2010, 114, 816–830, doi:10.1016/j.rse.2009.11.021.
[6]
Donoghue, D.N.M.; Watt, P.J.; Cox, N.J.; Wilson, J. Remote sensing of species mixtures in conifer plantations using LiDAR height and intensity data. Remote Sens. Environ 2007, 110, 509–522, doi:10.1016/j.rse.2007.02.032.
[7]
Wang, C.; Glenn, N.F. Integrating LiDAR intensity and elevation data for terrain characterization in forest area. IEEE Geosci. Remote Sens. Lett 2009, 6, 463–466, doi:10.1109/LGRS.2009.2016986.
[8]
H?fle, B.; Geist, T.; Rutzinger, M.; Pfeifer, N. Glacier surface segmentation using airborne laser scanner point cloud and intensity data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2007, 36, 195–200.
[9]
Brzank, A.; Heipke, C.; Goepfert, J.; Soergel, U. Aspects of generating precise digital terrain models in the Wadden Sea from lidar-water classification and structure line extraction. ISPRS J. Photogramm. Remote Sens 2008, 63, 510–528, doi:10.1016/j.isprsjprs.2008.02.002.
[10]
Chust, G.; Galparsoro, I.; Borja, A.; Franco, J.; Uriarte, A. Coastal and estuarine habitat mapping, using LIDAR height and intensity and multi-spectral imagery. Estuar. Coastal Shelf Sci 2008, 78, 633–643, doi:10.1016/j.ecss.2008.02.003.
[11]
El-Ashmawy, N.; Shaker, A.; Yan, W.Y. Pixel VS Object-Based Image Classification Techniques for Lidar Intensity Data. Proceedings of ISPRS Workshop Laser Scanning 2011, Calgary, AB, Canada, 29 August–1 September 2011.
[12]
Collin, A.; Long, B.; Archambault, P. Salt-marsh characterization, zonation assessment and mapping through a dual-wavelength LiDAR. Remote Sens. Environ 2010, 114, 520–530, doi:10.1016/j.rse.2009.10.011.
[13]
S?yn?joki, R.; Packalén, P.; Maltamo, M.; Vehmas, M.; Eerik?inen, K. Detection of aspens using high resolution aerial laser scanning data and digital aerial images. Sensors 2008, 8, 5037–5054, doi:10.3390/s8085037.
[14]
Luzi, G.; Noferini, L.; Mecatti, D.; Macaluso, G.; Pieraccini, M.; Atzeni, C.; Schaffhauser, A.; Fromm, R.; Nagler, T. Using a ground-based SAR interferometer and a terrestrial laser scanner to monitor a snow-covered slope: Results from an experimental data collection in Tyrol (Austria). IEEE Trans. Geosci. Remote Sens 2009, 47, 382–393, doi:10.1109/TGRS.2008.2009994.
[15]
Holopainen, M.; Haapanen, R.; Karjalainen, M.; Vastaranta, M.; Hyypp?, J.; Yu, X.; Tuominen, S.; Hyypp?, H. Comparing accuracy of airborne laser scanning and TerrSAR-X radar images in the estimation of plot-level forest variables. Remote Sens 2010, 2, 432–445, doi:10.3390/rs2020432.
[16]
Coren, F.; Sterzai, P. Radiometric correction in laser scanning. Int. J. Remote Sens 2006, 27, 3097–3104, doi:10.1080/01431160500217277.
[17]
Ahokas, E.; Kaasalainen, S.; Hyypp?, J.; Suomalainen, J. Calibration of the Optech ALTM 3100 laser scanner intensity data using brightness targets. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2006, 34, 3–6.
[18]
Wagner, W.; Ullrich, A.; Ducic, V.; Melzer, T.; Studnicka, N. Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner. ISPRS J. Photogramm. Remote Sens 2006, 60, 100–112, doi:10.1016/j.isprsjprs.2005.12.001.
[19]
H?fle, B.; Pfeifer, N. Correction of laser scanning intensity data: Data and model-driven approaches. ISPRS J. Photogramm. Remote Sens 2007, 62, 415–433, doi:10.1016/j.isprsjprs.2007.05.008.
[20]
Kaasalainen, S.; Hyypp?, H.; Kukko, A.; Litkey, P.; Ahokas, E.; Hyypp?, J.; Lehner, H.; Jaakkola, A.; Suomalainen, J.; Akuj?rvi, A.; et al. Radiometric calibration of LIDAR intensity with commercially available reference targets. IEEE Trans. Geosci. Remote Sens 2009, 47, 588–598, doi:10.1109/TGRS.2008.2003351.
[21]
Wagner, W. Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: Basic physical concepts. ISPRS J. Photogramm. Remote Sens 2010, 65, 505–513, doi:10.1016/j.isprsjprs.2010.06.007.
[22]
Briese, C.; H?fle, B.; Lehner, H.; Wagner, W.; Pfennigbauer, M.; Ullrich, A.; Doppler, C. Calibration of full-waveform airborne laser scanning data for object classification. Proc. SPIE Laser Radar Technol. Appl. XIII 2008, 6950, 1–8.
[23]
Lehner, H.; Briese, C. Radiometric calibration of full-waveform airborne laser scanning data based on natural surfaces. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2010, 38, 360–365.
[24]
Alexander, C.; Tansey, K.; Kaduk, J.; Holland, D.; Tate, N.J. Backscatter coefficient as an attribute for the classification of full-waveform airborne laser scanning data in urban areas. ISPRS J. Photogramm. Remote Sens 2010, 65, 423–432, doi:10.1016/j.isprsjprs.2010.05.002.
[25]
Boyd, D.S.; Hill, R.A. Validation of airborne lidar intensity values from a forested landscape using hymap data: Preliminary analyses. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2007, 36, 71–76.
[26]
Roncat, A.; Lehner, H.; Briese, C. Laser Pulse Variations and Their Influence on Radiometric Calibration of Full-Waveform Laser Scanner Data. Proceedings of ISPRS Workshop Laser Scanning 2011, Calgary, AB, Canada, 29 August–1 September 2011.
[27]
Vain, A.; Yu, X.; Kaasalainen, S.; Hyypp?, J. Correcting airborne laser scanning intensity data for Automatic Gain Control effect. IEEE Geosci. Remote Sens. Lett 2010, 7, 511–514, doi:10.1109/LGRS.2010.2040578.
[28]
Korpela, I.; ?rka, H.O.; Hyypp?, J.; Heikkinen, V.; Tokola, T. Range and AGC normalization in airborne discrete-return LiDAR intensity data for forest canopies. ISPRS J. Photogramm. Remote Sens 2010, 65, 369–379, doi:10.1016/j.isprsjprs.2010.04.003.
[29]
Pfeifer, N.; H?fle, B.; Briese, C.; Rutzinger, M.; Haring, A. Analysis of the backscattered energy in terrestrial laser scanning data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2008, 37, 1045–1052.
[30]
Kaasalainen, S.; Krooks, A.; Kukko, A.; Kaartinen, H. Radiometric calibration of terrestrial laser scanners with external reference targets. Remote Sens 2009, 1, 144–158, doi:10.3390/rs1030144.
[31]
Balduzzi, M.A.F.; Van der Zande, D.; Stuckens, J.; Verstraeten, W.W.; Coppin, P. The properties of terrestrial laser system intensity for measuring leaf geometries: A case study with conference pear trees (Pyrus Communis). Sensors 2011, 11, 1657–1681. 22319374
[32]
Starek, M.; Luzum, B.; Kumar, R.; Slatton, K.C. Geosensing Engineering and Mapping (GEM); Civil and Coastal Engineering Department, University of Florida: Gainesville, FL, USA, 2006. Report Rep_2006-12-001..
[33]
Jutzi, B.; Gross, H. Normalization of LiDAR intensity data based on range and surface incidence angle. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2009, 38, 213–218.
[34]
Vain, A.; Kaasalainen, S.; Pyysalo, U.; Krooks, A.; Litkey, P. Use of naturally available reference targets to calibrate airborne laser scanning intensity data. Sensors 2009, 9, 2780–2796, doi:10.3390/s90402780. 22574045
[35]
Leader, J.C. Analysis and prediction of laser scattering from rough-surface materials. J. Opt. Soc. Am 1979, 69, 610–629, doi:10.1364/JOSA.69.000610.
[36]
Hapke, B. Theory of Reflectance and Emittance Spectroscopy; Cambridge University Press: Cambridge, UK, 1993.
[37]
Kaasalainen, S.; Peltoniemi, J.; N?r?nen, J.; Suomalainen, J.; Kaasalainen, M.; Stenman, F. Small-angle goniometry for backscattering measurements in the broadband spectrum. Appl. Opt 2005, 44, 1485–1490, doi:10.1364/AO.44.001485. 15796250
[38]
Kaasalainen, S.; Kukko, A.; Lindroos, T.; Litkey, P.; Kaartinen, H.; Hyypp?, J.; Ahokas, E. Brightness measurements and calibration with airborne and terrestrial laser scanners. IEEE Trans. Geosci. Remote Sens 2008, 46, 528–534, doi:10.1109/TGRS.2007.911366.
[39]
Chasmer, L.; Hopkinson, C.; Smith, B.; Treitz, P. Examining the influence of laser pulse repetition frequencies on conifer forest canopy returns. Photogramm. Eng. Remote Sens 2006, 72, 1359–1367.