A sensitive volatile organic vapor sensor based on the LSPR properties of silver triangular nanoprisms is proposed in this paper. The triangular nanoprisms were fabricated by a nanosphere lithography (NSL) method. They have sharp vertices and edges, and are arranged in an ideal hexangular array. These characteristics ensure that they exhibit an excellent LSPR spectrum and a high sensitivity to the exterior environment changes. The LSPR spectra responding to ethanol vapor and four other volatile organic vapors—acetone, benzene, hexane and propanol—were measured with a UV-vis spectrometer in real time. Compared with the other four vapors, ethanol exhibits the highest sensitivity (~0.1 nm/mg L?1) and the lowest detection limit (~10 mg/L) in the spectral tests. The ethanol vapor test process is also fast (~4 s) and reversible. These insights demonstrate that the triangular nanoprism based nano-sensor can be used in ethanol vapor detection applications.
References
[1]
Barsan, N; Koziej, D; Weimar, U. Metal oxide-based gas sensor research: How to? Sens. Actuat. B: Chem 2007, 121, 18–35, doi:10.1016/j.snb.2006.09.047.
[2]
Vladimir, A. Metal oxide hydrogen, oxygen, and carbon monoxide sensors for hydrogen setups and cells. Int. J. Hyd. Energy 2007, 32, 1145–1158, doi:10.1016/j.ijhydene.2007.01.004.
[3]
Liu, Y; Dong, J; Hesketh, PJ; Liu, M. Synthesis and gas sensing properties of ZnO single crystal flakes. J. Mate. Chem 2005, 15, 2316–2320, doi:10.1039/b502974k.
[4]
Nguyen, VH; Nguyen, APD; Tran, T; Mai, AT; Nguyen, DC. Gas-sensing properties of tin oxide doped with metal oxides and carbon nanotubes: a competitive sensor for ethanol and liquid petroleum gas. Sens. Actuat. B: Chem 2010, 144, 450–456, doi:10.1016/j.snb.2009.03.043.
[5]
Andrzej, B; Mikolaj, A; Genady, Z; Vladimir, A. Sensing properties of two-component Langmuir-Blodgett layer and its porous derivative in SAW sensor for vapor of methanol and ethanol. Thin Solid Films 2010, 518, 3402–3406, doi:10.1016/j.tsf.2009.10.157.
[6]
Cristian, V; Constantin, G. Surface acoustic wave sensors with carbon nanotubes and SiO2/Si nanoparticles based nanocomposites for VOC detection. Sens. Actuat. B: Chem 2010, 147, 43–47, doi:10.1016/j.snb.2010.02.064.
Sun, Y; Fan, X. Analysis of ring resonators for chemical vapor sensor development. Opt. Express 2008, 16, 10254–10268, doi:10.1364/OE.16.010254. 18607434
[9]
Hooker, SA. Nanotechnology Advantages Applied to Gas Sensor Development. Proceedings of the Nanoparticles 2002 Conference, New York, NY, USA, October 2002; pp. 1–7.
[10]
Rella, R; Siciliano, P; Capone, S; Epifani, M; Vasanelli, L; Liceiulli, A. Air quality monitoring by means of sol-gel integrated tin oxide thin films. Sens. Actuat. B: Chem 1999, 58, 283–288, doi:10.1016/S0925-4005(99)00090-8.
[11]
Wan, Q; Li, QH; Chen, YJ; Wang, TH; He, XL; Li, JP; Lin, CL. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett 2004, 84, 3654–3656, doi:10.1063/1.1738932.
[12]
Ekmel, O. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 2006, 311, 189–193, doi:10.1126/science.1114849. 16410515
[13]
Harry, AA. The promise of plasmonics. Sci. Amer 2007, 296, 56–63, doi:10.1038/scientificamerican0407-56. 17479631
[14]
Sundaramurthy, A; Schuck, PJ; Conley, NR; Fromm, DP; Kino, GS; Moerner, WE. Toward nanometer-scale optical photolithography: Utilizing the near-field of bowtie optical nanoantennas. Nano Lett 2006, 6, 355–360, doi:10.1021/nl052322c. 16522022
[15]
Zhu, SL; Li, F; Du, CL; Fu, YQ. A localized surface plasmon resonance nanosensor based on rhombic Ag nanoparticle array. Sens. Actuat. B: Chem 2008, 134, 193–198, doi:10.1016/j.snb.2008.04.028.
[16]
Willets, KA; van Duyne, RP. Localized surface plasmon spectroscopy and sensing. Ann. Rev. Chem 2007, 58, 267–297, doi:10.1146/annurev.physchem.58.032806.104607.
[17]
Haes, AJ; van Duyne, RP. A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc 2002, 124, 10596–10604, doi:10.1021/ja020393x. 12197762
[18]
Riboh, JC; Haes, AJ; McFarland, AD; Yonzon, CR; van Duyne, RP. A nanoscale optical biosensor: Real time immunoassay in physiological buffer enabled by improved nanoparticle adhesion. J. Phys. Chem. B 2003, 107, 1772–1780, doi:10.1021/jp022130v.
[19]
Yonzon, CR; Jioung, E; Zou, S; Schatz, GC; Mrksich, M; Van Duyne, RP. A comparative analysis of localized and propagating surface plasmon resonance sensors: The binding of Concanavalin A to a Monosaccharide functionalized self-assembled monolayer. J. Am. Chem. Soc 2004, 126, 12669–12676, doi:10.1021/ja047118q. 15453801
[20]
Haes, AJ; Chang, L; Klein, WL; van Duyne, RP. Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J. Am. Chem. Soc 2005, 127, 2264–2271, doi:10.1021/ja044087q. 15713105
[21]
Dahlin, A; Zach, M; Rindzevicius, T; Kall, M; Sutherland, DS; Hook, F. Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events. J. Am. Chem. Soc 2005, 127, 5043–5048, doi:10.1021/ja043672o. 15810838
[22]
Lin, TJ; Huang, KT; Liu, CY. Determination of organophosphorous pesticides by a novel biosensor based on localized surface plasmon resonance. Biosens. Bioelectron 2006, 22, 513–518, doi:10.1016/j.bios.2006.05.007. 16769211
[23]
Endo, T; Yanagida, Y; Hatsuzawa, T. Quantitative determination of hydrogen peroxide using polymer coated Ag nanoparticles. Measurement 2008, 41, 1045–1053, doi:10.1016/j.measurement.2008.03.004.
[24]
Dubas, ST; Pimpan, V. Green synthesis of silver nanoparticles for ammonia sensing. Talanta 2008, 76, 29–33, doi:10.1016/j.talanta.2008.01.062. 18585235
[25]
Hu, JL; Wang, L; Cai, WP; Li, Y; Zeng, HB; Zhao, LQ; Liu, PS. Smart and reversible surface plasmon resonance responses to various atmospheres for silver nanoparticles loaded in mesoporous SiO2. J. Phys. Chem. C 2009, 113, 19039–19045, doi:10.1021/jp9065482.
[26]
Bingham, JM; Anker, JN; Kreno, LE; Van Duyne, RP. Gas sensing with high-resolution localized surface Plasmon resonance spectroscopy. J. Am. Chem. Soc 2010, 132, 17358–17359, doi:10.1021/ja1074272.
[27]
Kreno, LE; Hupp, JT; van Duyne, RP. Metal-organic framework thin film for enhanced localized surface Plasmon resonance gas sensing. Anal. Chem 2010, 82, 8042–8046, doi:10.1021/ac102127p. 20839787
Chen, YQ; Lu, CJ. Surface modification on silver nanoparticles for enhancing vapor selectivity of localized surface plasmon resonance sensors. Sens. Actuat. B: Chem 2009, 135, 492–498, doi:10.1016/j.snb.2008.09.030.
[30]
Karakouz, T; Vaskevich, A; Rubinstein, I. Polymer-coated gold island films as localized plasmon transducers for gas sensing. J. Phys. Chem. B 2008, 112, 14530–14538, doi:10.1021/jp804829t. 18808090