This paper presents a novel phase unwrapping architecture for accelerating the computational speed of digital holographic microscopy (DHM). A fast Fourier transform (FFT) based phase unwrapping algorithm providing a minimum squared error solution is adopted for hardware implementation because of its simplicity and robustness to noise. The proposed architecture is realized in a pipeline fashion to maximize through put of thecomputation. Moreover, the number of hardware multipliers and dividers are minimized to reduce the hardware costs. The proposed architecture is used as a custom user logic in a system on programmable chip (SOPC) for physical performance measurement. Experimental results reveal that the proposed architecture is effective for expediting the computational speed while consuming low hardware resources for designing an embedded DHM system.
References
[1]
Cuche, E; Marquet, P; Depeursinge, C. Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel of-axis holograms. Appl. Opt 1999, 38, 6994–7001, doi:10.1364/AO.38.006994. 18324243
[2]
Mann, CJ; Yu, L; Lo, CM; Kim, MK. High-resolution quantitative phase-contrast microscopy by digital holography. Opt. Express 2005, 13, 8693–8698, doi:10.1364/OPEX.13.008693. 19498901
[3]
Lin, YC; Cheng, CJ. Determining the refractive index profile of micro-optical elements using transflective digital holographic microscopy. J. Opt 2010, 12, 115402, doi:10.1088/2040-8978/12/11/115402.
[4]
Lin, YC; Cheng, CJ; Poon, TC. Optical sectioning with a low coherence phase-shifting digital holographic microscope. Appl. Opt 2011, 50, B25–B30, doi:10.1364/AO.50.000B25. 21364708
[5]
Parshall, D; Kim, MK. Digital holographic microscopy with dual-wavelength phase unwrapping. Appl. Opt 2006, 45, 451–459, doi:10.1364/AO.45.000451. 16463728
[6]
Li, Z; Bao, Z; Suo, Z. A joint image coregistration, phase noise suppression, and phase unwrapping method based on subspace projection for multibaseline InSAR systems. IEEE Trans. Geosci. Remote 2007, 45, 584–591, doi:10.1109/TGRS.2006.888143.
[7]
Chavez, S; Xiang, QS; An, L. Understanding phase maps in MRI: A new cutline phase unwrapping method. IEEE Trans. Med. Imaging 2002, 21, 966–977, doi:10.1109/TMI.2002.803106. 12472269
[8]
Carl, D; Fratz, M; Pfeifer, M; Giel, DM; Hofler, H. Multiwavelength digital holography with autocalibration of phase shifts and artificial wavelengths. Appl. Opt 2009, 48, H1–H8, doi:10.1364/AO.48.0000H1. 19956279
[9]
Hansel, T; Muller, J; Falldorf, C; Kopylow, CV; Juptner, W; Grunwald, R; Steinmeyer, G; Griebner, U. Ultrashort-pulse dual-wavelength source for digital holographic two-wavelength contouring. Appl. Phys. B 2007, 89, 513–516, doi:10.1007/s00340-007-2849-6.
[10]
Knoche, S; Kemper, B; Wernicke, G; Bally, GV. Modulation analysis in spatial phase shifting electronic speckle pattern interferometry and application for automated data selection on biological specimens. Opt. Commun 2007, 270, 68–78, doi:10.1016/j.optcom.2004.12.053.
[11]
Kuhn, J; Colomb, T; Montfort, F; Charriere, F; Emery, Y; Cuche, E; Marquet, P; Depeursinge, C. Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition. Opt. Express 2007, 15, 7231–7242, doi:10.1364/OE.15.007231. 19547044
[12]
Shaked, NT; Rinehart, MT; Wax, A. Dual-interference-channel quantitative-phase microscopy of live cell dynamics. Opt. Lett 2009, 34, 767–769, doi:10.1364/OL.34.000767. 19282926
[13]
Ghiglia, DC; Pritt, MD. Two-Dimensional Phase Unwrapping: Theory, Algorithms and Software; Wiley Inter-Science: New York, NY, USA, 1998.
[14]
Ghiglia, DC; Romero, LA. Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods. J. Opt. Soc. Am. A 1994, 11, 107–117, doi:10.1364/JOSAA.11.000107.
[15]
Pritt, MD. Phase unwrapping by means of multigrid techniques for interferometric SAR. IEEE Trans. Geosci. Remote 1996, 34, 728–738, doi:10.1109/36.499752.
[16]
Dias, JMB; Leitao, JMN. The ZπM algorithm: A method for interferometric image reconstruction in SAR/SAS. IEEE Trans. Image Process 2002, 11, 408–422, doi:10.1109/TIP.2002.999675. 18244643
[17]
Dias, JMB; Valadao, G. Phase unwrapping via graph cuts. IEEE Trans. Image Process 2007, 16, 684–697, doi:10.1109/TIP.2006.891047. 17357729
[18]
Karout, SA; Gdeisat, MA; Burton, DR; Lalor, MJ. Two-dimensional phase unwrapping using a hybrid genetic algorithm. Appl. Opt 2007, 46, 730–743, doi:10.1364/AO.46.000730. 17279161
[19]
Karasev, PA; Campbell, DP; Richards, MA. Obtaining a 35× speedup in 2D phase unwrapping using commodity graphics processors. Proceedings of IEEE Radar Conference, Boston, MA, USA, 17–20 April 2007; pp. 574–578.
[20]
Braganza, S; Leeser, M. An efficient implementation of a phase unwrapping kernel on reconfigurable hardware. Proceedings of International Conference on Application-Specific Systems, Architectures and Processors, Leuven, Belgium, 2–4 July 2008; pp. 138–143.
[21]
Mistry, P; Braganza, S; Kaeli, D; Leeser, M. Accelerating phase unwrapping and affine transformations for optical quadrature microscopy using CUDA. Proeedings Second Workshop on General Purpose Processing on Graphics Processing Units, Washington, DC, USA, 8–8 March 2009; pp. 28–37.
[22]
Shimobaba, T; Sato, Y; Miura, J; Takenouchi, M; Ito, T. Real-time digital holographic microscopy using the graphic processing unit. Opt. Express 2008, 16, 11776–11781, doi:10.1364/OE.16.011776. 18679449
Akerson, JJ; Yang, YE; Hara, Y; Wu, BI; Kong, JA. Automatic phase unwrapping algorithms in synthetic aperture radar (SAR) interferometry. IEICE Trans Electron 2000, E83-C, 1896–1904.
[25]
Zebker, HA; Lu, Y. Phase unwrapping algorithms for radar interferometry: Residue-cut, least-squares, and synthesis algorithms. J. Opt. Soc. Am. A 1998, 15, 586–598.
[26]
FFT MegaCore Function User Guide; Altera Corporation: San Jose, CA, USA, 2011.
[27]
Floating Point Mega Function User Guide; Altera Corporation: San Jose, CA, USA, 2011.
[28]
NIOS II Processor Reference Handbook; Altera Corporation: San Jose, CA, USA, 2011.