This paper describes 4-valent tiling-like structures, called pseudotilings, composed of barrel tiles and apeirogonal pseudotiles in Euclidean 3-space. These (frequently face-to-face) pseudotilings naturally rise in columns above 3-valent plane tilings by?convex polygons, such that each column is occupied by stacked congruent barrel tiles or congruent apeirogonal pseudotiles. No physical space is occupied by the apeirogonal pseudotiles. Many interesting pseudotilings arise from plane tilings with high symmetry. As combinatorial structures, these are abstract polytopes of rank 4 with both finite and infinite 2-faces and facets.
References
[1]
Grünbaum, B. Regular polyhedra—old and new. Aequ. Math. 1977, 16, 1–20, doi:10.1007/BF01836414.
[2]
Schulte, E. Symmetry of polytopes and polyhedra. In Handbook of Discrete and Computational Geometry, 2nd; Goodman, J.E., O’Rourke, J., Eds.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2004; pp. 431–454.
[3]
Dress, A.W.M. A combinatorial theory of Grünbaum’s new regular polyhedra, Part I: Günbaums’s new regular polyhedra and their automorphism group. Aequ. Math. 1981, 23, 252–265, doi:10.1007/BF02188039.
[4]
Dress, A.W.M. A combinatorial theory of Grünbaums’s new regular polyhedra, Part II: Complete enumeration. Aequ. Math. 1985, 29, 222–243, doi:10.1007/BF02189831.
[5]
Leytem, C. Pseudo-Petrie operators on Grünbaumpolyhedra. Math. Slovaca 1997, 47, 175–188.
[6]
McMullen, P.; Schulte, E. Regular polytopes in ordinary space. Discrete Comput. Geom. 1997, 17, 449–478, doi:10.1007/PL00009304.
[7]
McMullen, P.; Schulte, E. Regular and chiralpolytopes in low dimensions. In The Coxeter Legacy: Re?ections and Projections; Davis, C., Ellers, E.W., Eds.; AMS: Providence, RI, USA, 2005; pp. 87–106.
[8]
McMullen, P.; Schulte, E. Abstract Regular Polytopes (Encyclopedia of Mathematics and its Applications); Cambridge University Press: Cambridge, UK, 2002; Volume 92.
[9]
Grünbaum, B.; Shephard, G.C.; Miller, J.C.P. Uniform tilings with hollow tiles. In The Geometric Vein: The Coxeter Festschrift; Davis, C., Grünbaum, B., Sherk, F.A., Eds.; Springer: New York, NY, USA, 1981; pp. 17–64.
[10]
Grünbaum, B.; Shephard, G.C. Tilingsand Patterns; W.H. Freeman and Company: New York, NY, USA, 1987.
[11]
Schattschneider, D.; Senechal, D. Tilings. In Handbook of Discrete and Computational Geometry, 2nd; Goodman, J.E., O’Rourke, J., Eds.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2004; pp. 53–72.
[12]
West, D.B. Introduction to Graph Theory; Prentice Hall Inc.: Upper Saddle River, NJ, USA, 1996.
[13]
Maunder, C.R.F. Algebraic Topology; Cambridge University Press: Cambridge, UK, 1980.
[14]
Locher, J.L. The Magic of M.C. Escher; Harry N. Abrams: New York, NY, USA, 2000.