全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Symmetry  2012 

Convex-Faced Combinatorially Regular Polyhedra of Small Genus

DOI: 10.3390/sym4010001

Keywords: Platonic solids, regular polyhedra, regular maps, Riemann surfaces, polyhedral embeddings, automorphism groups

Full-Text   Cite this paper   Add to My Lib

Abstract:

Combinatorially regular polyhedra are polyhedral realizations (embeddings) in Euclidean 3-space E3 of regular maps on (orientable) closed compact surfaces. They are close analogues of the Platonic solids. A surface of genus g ≥ 2 admits only finitely many regular maps, and generally only a small number of them can be realized as polyhedra with convex faces. When the genus g is small, meaning that g is in the historically motivated range 2 ≤ g ≤ 6, only eight regular maps of genus g are known to have polyhedral realizations, two discovered quite recently. These include spectacular convex-faced polyhedra realizing famous maps of Klein, Fricke, Dyck, and Coxeter. We provide supporting evidence that this list is complete; in other words, we strongly conjecture that in addition to those eight there are no other regular maps of genus g, with 2 ≤ g ≤ 6, admitting realizations as convex-faced polyhedra in E3. For all admissible maps in this range, save Gordan’s map of genus 4, and its dual, we rule out realizability by a polyhedron in E3.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133