全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Symmetry  2012 

Supersymmetric Sigma Model Geometry

DOI: 10.3390/sym4030474

Keywords: supersymmetry, complex geometry, sigma models

Full-Text   Cite this paper   Add to My Lib

Abstract:

This is a review of how sigma models formulated in Superspace have become important tools for understanding geometry. Topics included are: The (hyper)k?hler reduction; projective superspace; the generalized Legendre construction; generalized K?hler geometry and constructions of hyperk?hler metrics on Hermitian symmetric spaces.

References

[1]  Gell-Mann, M.; Levy, M. The axial vector current in beta decay. Nuovo Cimento 1960, 16, 705–726, doi:10.1007/BF02859738.
[2]  Zumino, B. Supersymmetry and kahler manifolds. Phys. Lett. B 1979, 87, 203–206, doi:10.1016/0370-2693(79)90964-X.
[3]  Alvarez-Gaumé, L.; Freedman, D.Z. Geometrical structure and ultraviolet finiteness in the supersymmetric sigma model. Commun. Math. Phys. 1981, 80, 443–451, doi:10.1007/BF01208280.
[4]  Lindstr?m, U.; Ro?ek, M. Scalar tensor duality and N = 1, 2 nonlinear sigma-models. Nucl. Phys. B 1983, 222, 285–308, doi:10.1016/0550-3213(83)90638-7.
[5]  Hitchin, N.J.; Karlhede, A.; Lindstr?m, U.; Ro?ek, M. Hyperkahler metrics and supersymmetry. Commun. Math. Phys. 1987, 108, 535–589, doi:10.1007/BF01214418.
[6]  Karlhede, A.; Lindstr?m, U.; Ro?ek, M. Selfinteracting tensor multiplets in N = 2 superspace. Phys. Lett. B 1984, 147, 297–300.
[7]  Gates, S.J.; Hull, C.M.; Ro?ek, M. Twisted multiplets and new supersymmetric nonlinear sigma models. Nucl. Phys. B 1984, 248, 157–186, doi:10.1016/0550-3213(84)90592-3.
[8]  Grundberg, J.; Lindstr?m, U. Actions for linear multiplets in six-dimensions. Class. Quantum Gravity 1985, 2, L33, doi:10.1088/0264-9381/2/2/005.
[9]  Karlhede, A.; Lindstr?m, U.; Ro?ek, M. Hyperkahler manifolds and nonlinear supermultiplets. Commun. Math. Phys. 1987, 108, 529–534, doi:10.1007/BF01214417.
[10]  Lindstr?m, U. Generalized N = (2,2) supersymmetric nonlinear sigma models. Phys. Lett. 2004, B587, 216–224.
[11]  Lindstr?m, U.; Ro?ek, M. New hyperkahler metrics and new supermultiplets. Commun. Math. Phys. 1988, 115, 21–29, doi:10.1007/BF01238851.
[12]  Buscher, T.; Lindstr?m, U.; Ro?ek, M. New supersymmetric sigma models with wess-zumino terms. Phys. Lett. B 1988, 202, 94–98, doi:10.1016/0370-2693(88)90859-3.
[13]  Lindstr?m, U.; Ro?ek, M. N = 2 super yang-mills theory in projective superspace. Commun. Math. Phys. 1990, 128, 191–196, doi:10.1007/BF02097052.
[14]  Lindstr?m, U.; Ivanov, I.T.; Ro?ek, M. New N = 4 superfields and sigma models. Phys. Lett. B 1994, 328, 49–54, doi:10.1016/0370-2693(94)90426-X.
[15]  Lindstr?m, U.; Kim, B.; Ro?ek, M. The Nonlinear multiplet revisited. Phys. Lett. B 1995, 342, 99–104, doi:10.1016/0370-2693(94)01388-S.
[16]  Ivanov, I.T.; Ro?ek, M. Supersymmetric sigma models, twistors, and the Atiyah-Hitchin metric. Commun. Math. Phys. 1996, 182, 291–302, doi:10.1007/BF02517891.
[17]  Gonzalez-Rey, F.; Ro?ek, M.; Wiles, S.; Lindstr?m, U.; von Unge, R. Feynman rules in N = 2 projective superspace. (I). Massless hypermultiplets. Nucl. Phys. B 1998, 516, 426–448, doi:10.1016/S0550-3213(98)00073-X.
[18]  Gonzalez-Rey, F.; von Unge, R. Feynman rules in N = 2 projective superspace. (II). Massive hypermultiplets. Nucl. Phys. B 1998, 516, 449–466, doi:10.1016/S0550-3213(98)00074-1.
[19]  Gonzalez-Rey, F. Feynman rules in N = 2 projective superspace. III: Yang-Mills multiplet. 1997, arXiv:hep-th/9712128. Available online: http://arxiv.org/abs/hep-th/9712128 (accessed on 14 August 2012).
[20]  Kuzenko, S.M.; Tartaglino-Mazzucchelli, G. 5D supergravity and projective superspace. J. High Energy Phys. 2008, doi:10.1088/1126-6708/2008/02/004.
[21]  Kuzenko, S.M.; Lindstr?m, U.; Ro?ek, M.; Tartaglino-Mazzucchelli, G. 4D N = 2 supergravity and projective superspace. J. High Energy Phys. 2008, doi:10.1088/1126-6708/2008/09/051.
[22]  Kuzenko, S.M. On N = 2 supergravity and projective superspace: Dual formulations. Nucl. Phys. B 2009, 810, 135–149, doi:10.1016/j.nuclphysb.2008.10.021.
[23]  Kuzenko, S.M.; Lindstr?m, U.; Ro?ek, M.; Tartaglino-Mazzucchelli, G. On conformal supergravity and projective superspace. J. High Energy Phys. 2008, doi:10.1088/1126-6708.
[24]  Tartaglino-Mazzucchelli, G. 2D N = (4,4) superspace supergravity and bi-projective superfields. J. High Energy Phys. 2010, doi:10.1007/JHEP04(2010)034.
[25]  Linch, W.D.; Tartaglino-Mazzucchelli, G., III. Six-dimensional supergravity and projective superfields. 2012, arXiv:1204.4195. Available online: http://arxiv.org/abs/1204.4195 (accessed on 14 August 2012).
[26]  Arai, M.; Kuzenko, S.M.; Lindstr?m, U. Hyperkaehler sigma models on cotangent bundles of Hermitian symmetric spaces using projective superspace. J. High Energy Phys. 2007, doi:10.1088/1126-6708/2007/02/100.
[27]  Arai, M.; Kuzenko, S.M.; Lindstr?m, U. Polar supermultiplets, Hermitian symmetric spaces and hyperkahler metrics. J. High Energy Phys. 2007, doi:10.1088/1126-6708/2007/12/008.
[28]  Kuzenko, S.M.; Novak, J. Chiral formulation for hyperkahler sigma-models on cotangent bundles of symmetric spaces. J. High Energy Phys. 2008, doi:10.1088/1126-6708/2008/12/072.
[29]  Lindstr?m, U. Generalized N = (2,2) supersymmetric nonlinear sigma models. Phys. Lett. B 2004, 587, 216–224, doi:10.1016/j.physletb.2004.03.014.
[30]  Lindstr?m, U.; Minasian, R.; Tomasiello, A.; Zabzine, M. Generalized complex manifolds and supersymmetry. Commun. Math. Phys. 2005, 257, 235–256, doi:10.1007/s00220-004-1265-6.
[31]  Lindstr?m, U.; Ro?ek, M.; von Unge, R.; Zabzine, M. Generalized Kahler geometry and manifest N = (2,2) supersymmetric nonlinear sigma-models. J. High Energy Phys. 2005, doi:10.1088/ 1126-6708/2005/07/067.
[32]  Lindstr?m, U.; Ro?ek, M.; von Unge, R.; Zabzine, M. Generalized Kahler manifolds and off-shell supersymmetry. Commun. Math. Phys. 2007, 269, 833–849.
[33]  Bredthauer, A.; Lindstr?m, U.; Persson, J.; Zabzine, M. Generalized Kahler geometry from supersymmetric sigma models. Lett. Math. Phys. 2006, 77, 291–308, doi:10.1007/s11005-006-0099-x.
[34]  Lindstr?m, U.; Ro?ek, M.; von Unge, R.; Zabzine, M. Linearizing generalized Kahler geometry. J. High Energy Phys. 2007, doi:10.1088/1126-6708/2007/04/061.
[35]  Lindstr?m, U.; Ro?ek, M.; von Unge, R.; Zabzine, M. A potential for Generalized Kahler Geometry. IRMA Lect. Math. Theor. Phys. 2010, doi:10.4171/079-1/8.
[36]  Lindstr?m, U.; Ro?ek, M.; Ryb, I.; von Unge, R.; Zabzine, M. T-duality and Generalized Kahler Geometry. J. High Energy Phys. 2008, doi:10.1088/1126-6708/2008/02/056.
[37]  Hull, C.M.; Lindstr?m, U.; Ro?ek, M.; von Unge, R.; Zabzine, M. Generalized Kahler geometry and gerbes. J. High Energy Phys. 2009, doi:10.1088/1126-6708/2009/10/062.
[38]  G?teman, M.; Lindstr?m, U. Pseudo-hyperkahler Geometry and Generalized Kahler Geometry. Lett. Math. Phys. 2011, 95, 211–222, doi:10.1007/s11005-010-0456-7.
[39]  G?teman, M.; Lindstr?m, U.; Ro?ek, M.; Ryb, I. Sigma models with off-shell N=(4,4) supersymmetry and noncommuting complex structures. J. High Energy Phys. 2010, doi:10.1007/JHEP09(2010)055.
[40]  Hull, C.M.; Lindstr?m, U.; Ro?ek, M.; von Unge, R.; Zabzine, M. Generalized Calabi-Yau metric and Generalized Monge-Ampere equation. J. High Energy Phys. 2010, doi:10.1007/JHEP08(2010)060.
[41]  Hull, C.M.; Lindstr?m, U.; Ro?ek, M.; von Unge, R.; Zabzine, M. Generalized K?hler Geometry in (2,1) superspace. J. High Energy Phys. 2012, doi:10.1007/JHEP06(2012)013.
[42]  Craps, B.; Roose, F.; Troost, W.; van Proeyen, A. What is special Kahler geometry? Nucl. Phys. B 1997, 503, 565–613, doi:10.1016/S0550-3213(97)00408-2.
[43]  Albertsson, C.; Lindstr?m, U.; Zabzine, M. N = 1 supersymmetric sigma model with boundaries, I. Commun. Math. Phys. 2003, 233, 403–421.
[44]  Albertsson, C.; Lindstr?m, U.; Zabzine, M. N = 1 supersymmetric sigma model with boundaries. II. Nucl. Phys. B 2004, 678, 295–316, doi:10.1016/j.nuclphysb.2003.11.024.
[45]  Lindstr?m, U.; Ro?ek, M.; van Nieuwenhuizen, P. Consistent boundary conditions for open strings. Nucl. Phys. B 2003, 662, 147–169, doi:10.1016/S0550-3213(03)00262-1.
[46]  Howe, P.S.; Lindstr?m, U.; Wulff, L. Superstrings with boundary fermions. J. High Energy Phys. 2005, doi:10.1088/1126-6708/2005/08/041.
[47]  Hull, C.M. Lectures on Nonlinear Sigma Models and Strings. In Proceedings of the Lectures Give at Vancouver Theory Workshop, Vancouver, Canada, 25 July-6 August, 1986; p. 77.
[48]  Gates, S.J.; Grisaru, M.T.; Ro?ek, M.; Siegel, W. Superspace or one thousand and one lessons in supersymmetry. Front. Phys. 1983, 58, 1–548.
[49]  Wess, J.; Bagger, J. Supersymmetry and Supergravity; World Scientific: Princeton, NJ, USA, 1992; p. 259.
[50]  Buchbinder, I.L.; Kuzenko, S.M. Ideas and Methods of Supersymmetry and Supergravity: Or a Walk Through Superspace; Taylor & Francis: Bristol, UK, 1998; p. 656.
[51]  Salam, A.; Strathdee, J.A. Supergauge transformations. Nucl. Phys. B 1974, 76, 477–482, doi:10.1016/0550-3213(74)90537-9.
[52]  Berezin, F.; Leites, D. Supermanifolds. Soviet Maths Doklady 1976, 16, 1218–1222.
[53]  Berezin, F.A. The Method of Second Quantization; Academic Press: Waltham, MA, USA, 1966.
[54]  Hull, C.M.; Karlhede, A.; Lindstr?m, U.; Ro?ek, M. Nonlinear sigma models and their gauging in and out of superspace. Nucl. Phys. B 1986, 266, 1–44, doi:10.1016/0550-3213(86)90175-6.
[55]  Hull, C.M.; Witten, E. Supersymmetric sigma models and the heterotic string. Phys. Lett. 1985, B160, 398–402.
[56]  Guillemin, V.; Sternberg, S. Symplectic Techniques in Physics; Cambridge University Press: Cambridge, UK, 1984.
[57]  Hull, C.M.; Papadopoulos, G.; Spence, B.J. Gauge symmetries for (p,q) supersymmetric sigma models. Nucl. Phys. B 1991, 363, 593–621, doi:10.1016/0550-3213(91)80035-K.
[58]  Hull, C.M.; Papadopoulos, G.; Townsend, P.K. Potentials for (p,0) and (1,1) supersymmetric sigma models with torsion. Phys. Lett. B 1993, 316, 291–297, doi:10.1016/0370-2693(93)90327-E.
[59]  Hitchin, N. Generalized Calabi-Yau manifolds. Q. J. Math. 2003, 54, 281–308, doi:10.1093/qmath/hag025.
[60]  Gualtieri, M. Generalized Complex Geometry. Ph.D. Thesis, Oxford University, Oxford, UK, 2004.
[61]  Sevrin, A.; Troost, J. The geometry of supersymmetric sigma models. In Proceedings of the Workshop Gauge Theories, Applied Supersymmetry and Quantum Gravity, Imperial College, London, 5-10 July, 1996.
[62]  Sevrin, A.; Troost, J. Off-shell formulation of N = 2 nonlinear sigma models. Nucl. Phys. B 1997, 492, 623–646, doi:10.1016/S0550-3213(97)00103-X.
[63]  Grisaru, M.T.; Massar, M.; Sevrin, A.; Troost, J. The Quantum geometry of N = (2,2) nonlinear sigma models. Phys. Lett. B 1997, 412, 53–58, doi:10.1016/S0370-2693(97)01053-8.
[64]  Bogaerts, J.; Sevrin, A.; van der Loo, S.; van Gils, S. Properties of semichiral superfields. Nucl. Phys. B 1999, 562, 277–290, doi:10.1016/S0550-3213(99)00490-3.
[65]  Ivanov, I.T.; Kim, B.; Ro?ek, M. Complex structures, duality and WZW models in extended superspace. Phys. Lett. 1995, B343, 133–143.
[66]  Lyakhovich, S.; Zabzine, M. Poisson geometry of sigma models with extended supersymmetry. Phys. Lett. 2002, B548, 243–251.
[67]  Hitchin, N. Instantons, Poisson structures and generalized K?hler geometry. Commun. Math. Phys. 2006, 265, 131–164, doi:10.1007/s00220-006-1530-y.
[68]  Ro?ek, M.; Verlinde, E.P. Duality, quotients, and currents. Nucl. Phys. B 1992, 373, 630–646, doi:10.1016/0550-3213(92)90269-H.
[69]  Galperin, A.S.; Ivanov, E.A.; Ogievetsky, V.I.; Sokatchev, E.S. Harmonic Superspace; Cambridge University Press: Cambridge, UK, 2001; p. 306.
[70]  Kuzenko, S.M. Projective superspace as a double-punctured harmonic superspace. Int. J. Mod. Phys. A 1999, 14, 1737–1758, doi:10.1142/S0217751X99000889.
[71]  Jain, D.; Siegel, W. Deriving projective hyperspace from harmonic. Phys. Rev. D 2009, 80, 045024:1–045024:9.
[72]  Lindstr?m, U.; Ro?ek, M. Properties of hyperkahler manifolds and their twistor spaces. Commun. Math. Phys. 2010, 293, 257–278, doi:10.1007/s00220-009-0923-0.
[73]  Kuzenko, S.M. Lectures on nonlinear sigma-models in projective superspace. J. Phys. A Math. Theor. 2010, 43, 443001, doi:10.1088/1751-8113/43/44/443001.
[74]  Gates, S.J., Jr.; Kuzenko, S.M. The CNM-hypermultiplet nexus. Nucl. Phys. B 1999, 543, 122–140, doi:10.1016/S0550-3213(98)00870-0.
[75]  Van Nieuwenhuizen, P. General Theory of Coset Manifolds and Antisymmetric Tensors Applied to Kaluza-Klein Supergravity; Trieste School: Trieste, Italy, 1984.
[76]  Kuzenko, S.M. Extended supersymmetric nonlinear sigma-models on cotangent bundles of K?hler manifolds: Off-shell realizations, gauging, superpotentials. In Talks given at the University of Munich, Imperial College, Cambridge University, May-June 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133