Ribosome-inactivating proteins (RIPs) are EC3.2.32.22 N-glycosidases that recognize a universally conserved stem-loop structure in 23S/25S/28S rRNA, depurinating a single adenine (A4324 in rat) and irreversibly blocking protein translation, leading finally to cell death of intoxicated mammalian cells. Ricin, the plant RIP prototype that comprises a catalytic A subunit linked to a galactose-binding lectin B subunit to allow cell surface binding and toxin entry in most mammalian cells, shows a potency in the picomolar range. The most promising way to exploit plant RIPs as weapons against cancer cells is either by designing molecules in which the toxic domains are linked to selective tumor targeting domains or directly delivered as suicide genes for cancer gene therapy. Here, we will provide a comprehensive picture of plant RIPs and discuss successful designs and features of chimeric molecules having therapeutic potential.
References
[1]
Stirpe, F. Ribosome-inactivating proteins. Toxicon?2004, 44, 371–383, doi:10.1016/j.toxicon.2004.05.004. 15302521
[2]
Stirpe, F.; Battelli, M.G. Ribosome-inactivating proteins: Progress and problems. Cell. Mol. Life Sci.?2006, 44, 1850–1866.
Olsnes, S.; Pihl, A. Different biological properties of the two constituent peptide chains of ricin, a toxic protein inhibiting protein synthesis. Biochemistry?1973, 12, 3121–3126, doi:10.1021/bi00740a028. 4730499
[5]
Lord, J.M.; Roberts, L.M.; Robertus, J.D. Ricin: Structure, mode of action, and some current applications. FASEB J.?1994, 8, 201–208. 8119491
[6]
Peumans, W.J.; Hao, Q.; Van Damme, E.J. Ribosome-inactivating proteins from plants: More than N-glycosidases? FASEB J.?2001, 15, 1493–1506, doi:10.1096/fj.00-0751rev. 11427481
[7]
Stirpe, F.; Barbieri, L. Ribosome-inactivating proteins up to date. FEBS Lett.?1986, 195, 1–8, doi:10.1016/0014-5793(86)80118-1. 3510899
[8]
Kwon, S.Y.; An, C.S.; Liu, J.R.; Kwak, S-S.; Lee, H.S.; Lim, J.K.; Paek, K.H. Molecular cloning of a cDNA encoding ribosome-inactivating protein from Amaranthus viridis and its expression in E. coli. Mol. Cells?2000, 10, 8–12, doi:10.1007/s10059-000-0008-6. 10774740
Lam, Y.H.; Wong, Y.S.; Wang, B.; Wong, R.N.S.; Yeung, H.M.; Shaw, P.C. Use of trichosanthin to reduce infection by turnip mosaic virus. Plant Sci.?1996, 114, 111–117, doi:10.1016/0168-9452(95)04310-1.
[11]
Moon, Y.H.; Song, S.K.; Choi, K.W.; Lee, J.S. Expression of a cDNA encoding Phytolacca insularis antiviral protein confers virus resistance of transgenic potato plants. Mol. Cells?1997, 7, 807–815. 9509425
[12]
Taylor, S.; Massiah, A.; Lomonossoff, G.; Roberts, L.M.; Lord, J.M.; Hartley, M. Correlation between the activities of five ribosome-inactivating proteins in depurination of tobacco ribo-somes and inhibition of tobacco mosaic virus infection. Plant J.?1994, 5, 827–835. 8054989
[13]
Tarantini, A.; Pittaluga, E.; Marcozzi, G.; Testone, G.; Rodrigues-Pousada, R.A.; Giannino, D.; Spanò, L. Differential expression of saporin genes upon wounding, ABA treatment and leaf development. Physiol. Plant.?2010, 140, 141–152. 20536785
[14]
Carzaniga, R.; Sinclair, L.; Fordham-Skeleton, A.P.; Harris, N.; Croy, R.R.D. Cellular and subcellular distribution of saporins, type I ribosome-inactivating proteins, in soapwort (Saponaria officinalis L.). Planta?1994, 194, 461–470, doi:10.1007/BF00714457.
[15]
Ready, M.; Brown, D.T.; Robertus, J.D. Extracellular localization of pokeweed antiviral protein. Proc. Natl. Acad. Sci. USA?1986, 83, 5053–5056, doi:10.1073/pnas.83.14.5053. 3523481
[16]
Roberts, L.M.; Lord, J.M. The synthesis of Ricinus communis agglutinin-cotranslational and posttranslational modification of agglutinin polypeptides. J. Eur. Biochem.?1981, 119, 31–41, doi:10.1111/j.1432-1033.1981.tb05573.x.
Frigerio, L.; Jolliffe, N.A.; Di Cola, A.; Felipe, D.H.; Paris, N.; Neuhaus, J.M.; Lord, J.M.; Ceriotti, A.; Roberts, L.M. The internal propeptide of the ricin precursor carries a sequence-specific determinant for vacuolar sorting. Plant. Physiol.?2001, 126, 167–175, doi:10.1104/pp.126.1.167. 11351080
[22]
Frigerio, L.; Vitale, A.; Lord, J.M.; Cerotti, A.; Roberts, L.M. Free Ricin A chain, proricin, native toxin have different cellular fates when expressed in tobacco protoplasts. J. Biol. Chem.?1998, 273, 14194–14199. 9603921
[23]
Di Cola, A.; Frigerio, L.; Lord, J.M.; Ceriotti, A.; Roberts, L.M. Ricin A chain without its partner B chain is degraded after retrotranslocation from the endoplasmic reticulum to the cytosol in the plant cells. Proc. Natl. Acad. Sci. USA?2001, 98, 14726–14731, doi:10.1073/pnas.251386098. 11734657
[24]
Vitale, A.; Boston, R.S. Endoplasmic reticulum quality control and the unfolded protein response: Insights from plants. Traffic?2008, 9, 1581–1588, doi:10.1111/j.1600-0854.2008.00780.x. 18557840
[25]
Marshall, R.S.; Jolliffe, N.A.; Ceriotti, A.; Snowden, C.J.; Lord, J.M.; Frigerio, L.; Roberts, L.M. The role of CDC48 in the retro-translocation of non-ubiquitinated toxin substrates in plant cells. J. Biol. Chem.?2008, 283, 15869–15877. 18420588
[26]
Prestle, J.; Sch?nfelder, M.; Adam, G.; Mundry, K.-W. Type 1 ribosome-inactivating proteins depurinate plant 25S rRNA without species specificity. Nucl. Acid. Res.?1992, 20, 3179–3182, doi:10.1093/nar/20.12.3179.
[27]
Bonness, M.S.; Ready, M.P.; Irvin, J.D.; Mabri, T.J. Pokeweed antiviral protein inactivates pokeweed ribosomes; implications for the antiviral mechanism. Plant J.?1994, 5, 173–183. 8148876
[28]
Kataoka, J.; Habuka, N.; Miyano, M.; Masuta, C.; Koiwai, A. Adenine depurination and inactivation of plant ribosomes by an antiviral protein of Mirabilis jalapa (MAP). Plant Mol. Biol.?1992, 20, 1111–1119, doi:10.1007/BF00028897. 1463845
[29]
Vandenbussche, F.; Peumans, W.J.; Desmyter, S.; Proost, P.; Ciani, M.; Van Damme, E.J. The type 1 and type 2 ribosome-inactivating proteins from Iris confer transgenic tobacco plants local but not systemic protection against viruses. Planta?2004, 220, 211–221, doi:10.1007/s00425-004-1334-2. 15278456
[30]
Desvoyes, B.; Proyet, J.L.; Schlik, J.L.; Adami, P.; Jouvenot, M.; Dulieu, P. Identification of a biological inactive complex from a pokeweed antiviral protein. FEBS Lett.?1997, 410, 303–308, doi:10.1016/S0014-5793(97)00648-0. 9237651
[31]
Marshall, R.S.; D’Avila, F.; Di Cola, A.; Traini, R.; Spanò, L.; Fabbrini, M.S.; Ceriotti, A. Signal peptide-regulated toxicity of a plant ribosome inactivating protein during cell stress. Plant J.?2010. in press.
[32]
Kang, S.W.; Rane, N.S.; Kim, S.J.; Garrison, J.L.; Taunton, J.; Hegde, R.S. Substrate-specific translocational attenuation during ER stress defines a pre-emptive quality control pathway. Cell?2006, 127, 999–1013, doi:10.1016/j.cell.2006.10.032. 17129784
Fabbrini, M.S.; Rappocciolo, E.; Carpani, D.; Solinas, M.; Valsasina, B.; Breme, U.; Cavallaro, U.; Nikjaer, A.; Rovida, E.; Legname, G.; Soria, M.R. Characterization of a saporin isoform with lower ribosome-inhibiting activity. Biochem. J.?1997, 322, 719–727. 9148741
[35]
Rosenblum, M.G.; Kohor, W.A.; Beattie, K.L.; Beattie, W.G.; Marks, J.W.; Toman, P.D.; Cheung, L.H. Amino acid sequence analysis, gene construction, cloning, and expression of gelonin, a toxin derived from Gelonium multiflorum. J. Interf. Cytok. Res.?1995, 15, 547–555, doi:10.1089/jir.1995.15.547.
[36]
Montfort, W.; Villafranca, J.E.; Monzingo, A.F.; Ernst, S.R.; Katzin, B.; Rutenber, E.; Xuong, N.H.; Hamlin, R.; Robertus, J.D. The three-dimensional structure of ricin at 2.8 ?. J. Biol. Chem. 1987, 262, 5398–5403.
[37]
Monzingo, A.F.; Collins, E.J.; Ernst, S.R.; Irwin, J.D.; Robertus, J.D. The 2.5 ? structure of pokeweed antiviral protein. J. Mol. Biol.?1993, 233, 705–715, doi:10.1006/jmbi.1993.1547. 8411176
[38]
Zhou, K.; Fu, Z.; Chen, M.; Lin, Y.; Pan, K. Structure of trichosanthin at 1.88 ? resolution. Proteins?1994, 19, 4–13, doi:10.1002/prot.340190103. 8066085
[39]
Hosur, M.V.; Nair, B.; Satyamurthy, P.; Misquith, S.; Surolia, A.; Kannan, K.K. X-ray structure of gelonin at 1.8 ? resolution. J. Mol. Biol.?1995, 250, 368–380, doi:10.1006/jmbi.1995.0383. 7608981
[40]
Savino, C.; Federici, L.; Ippoliti, R.; Lendaro, E.; Tsernoglou, D. The crystal structure of saporin SO6 from Saponaria officinalis and its interaction with the ribosome. FEBS Lett.?2000, 470, 239–243, doi:10.1016/S0014-5793(00)01325-9. 10745075
[41]
Fermani, S.; Falini, G.; Ripamonti, A.; Polito, L.; Stirpe, F.; Bolognesi, A. The 1.4 ? structure of dianthin 30 indicates a role of surface potential at the active site of type 1 ribosome-inactivating proteins. J. Struct. Biol.?2005, 149, 204–212, doi:10.1016/j.jsb.2004.11.007. 15681236
[42]
Weston, S.A.; Tucker, A.D.; Thatcher, D.R.; Derbyshire, D.J.; Pauptit, R.A. X-ray structure of recombinant ricin A-chain at 1.8 ? resolution. J. Mol. Biol.?1994, 244, 410–422, doi:10.1006/jmbi.1994.1739. 7990130
[43]
Vater, C.A.; Bartle, L.M.; Leszyk, J.D.; Lambert, J.M.; Goldmacher, V.S. Ricin A chain can be chemically crosslinked to the mammalian ribosomal proteins L9 and L10e. J. Biol. Chem.?1995, 270, 12933–12940. 7759553
[44]
Hudak, K.A.; Dinman, J.D.; Tumer, N.E. Pokeweed antiviral protein accesses ribosomes by binding to L3. J. Biol. Chem.?1999, 274, 3859–3864. 9920941
[45]
Ippoliti, R.; Lendaro, E.; Bellelli, A.; Brunori, M. A ribosomal protein is specifically recognized by saporin, a plant toxin which inhibits protein synthesis. FEBS Lett.?1992, 298, 145–148, doi:10.1016/0014-5793(92)80042-F. 1544437
[46]
McCluskey, A.J.; Poon, G.M.K.; Bolewska-Pedyczak, E.; Srikumar, T.; Jeram, S.M.; Raught, B.; Gariepy, J. The catalytic subunit of Shiga-like toxin 1 interacts with ribosomal stalk proteins and is inhibited by their conserved C-terminal domain. J. Mol. Biol.?2008, 378, 375–386. 18358491
[47]
Korennykh, A.V.; Correll, C.C.; Piccirilli, A.J. Evidence for the importance of electrostatics in the function of two distinct families of ribosome inactivating toxins. RNA?2007, 13, 1391–1396, doi:10.1261/rna.619707. 17626843
[48]
Endo, Y. Mechanism of action of ricin and related toxins on the inactivation of eukaryotic ribosomes. Canc. Treat. Res.?1988, 37, 75–89.
[49]
Endo, Y.; Tsurugi, K.; Lambert, J.M. The site of action of six different ribosome-inactivating proteins from plants on eukaryotic ribosomes. The RNA N-glycosidase activity of the proteins. Biochem. Biophys. Res. Commun.?1988, 150, 1032–1036, doi:10.1016/0006-291X(88)90733-4. 3342056
[50]
Barbieri, L.; Gorini, P.; Valbonesi, P.; Castiglioni, P.; Stirpe, F. Unexpected activity of saporins. Nature?1994, 372, 624. 7527498
[51]
Barbieri, L.; Valbonesi, P.; Bonora, E.; Gorini, P.; Bolognesi, A.; Stirpe, F. Polynucleotide: adenosine glycosidase activity of ribosome-inactivating proteins: Effect on DNA, RNA and poly(A). Nucl. Acid. Res.?1997, 25, 518–522, doi:10.1093/nar/25.3.518.
[52]
Bagga, S.; Seth, D.; Batra, J.K. The cytotoxic activity of ribosome-inactivating protein saporin-6 is attributed to its rRNA N-glycosidase and internucleosomal DNA fragmentation activities. J. Biol. Chem.?2003, 278, 4813–4820. 12466280
[53]
Zarovni, N.; Vago, R.; Soldà, T.; Monaco, L.; Fabbrini, M.S. Saporin as a novel suicide gene in anticancer gene therapy. Canc. Gene Ther.?2007, 14, 165–173, doi:10.1038/sj.cgt.7700998.
[54]
Lombardi, A.; Bursomanno, S.; Lopardo, T.; Traini, R.; Colombatti, M.; Ippoliti, R.; Flavell, D.J.; Flavell, S.U.; Cerotti, A.; Fabbrini, M.S. Pichia pastoris as a host for secretion of toxic saporin chimeras. FASEB J.?2010, 24, 253–265. 19786581
[55]
Rajamohan, F.; Pugmire, M.J.; Kurinov, I.V.; Uckun, F.M. Modeling and alanine scanning mutagenesis studies of recombinant pokeweed antiviral protein. J. Biol. Chem.?2000, 275, 3382–3390. 10652330
[56]
Hudak, K.A.; Wang, P.; Tumer, N.E. A novel mechanism for inhibition of translation by pokeweed antiviral protein: Depurination of the capped RNA template. RNA?2000, 6, 369–380, doi:10.1017/S1355838200991337. 10744021
[57]
Roncuzzi, L.; Gasperi-Campani, A. DNA-nuclease activity of single-chain ribosome-inactivating proteins dianthin 30, saporin 6 and gelonin. FEBS Lett.?1996, 392, 16–20, doi:10.1016/0014-5793(96)00776-4. 8769306
[58]
Nicolas, E.; Beggs, J.M.; Haltiwanger, B.M.; Taraschi, T.F. A new class of DNA glycosylase/apurinic/apyrimidinic lyases that act on specific adenines in single-stranded DNA. J. Biol. Chem.?1998, 273, 17216–1720. 9642291
[59]
Fermani, S.; Tosi, G.; Farini, V.; Polito, L.; Falini, G.; Ripamonti, A.; Barbieri, L.; Chambery, A.; Bolognesi, A. Structure/function studies on two type 1 ribosome inactivating proteins: Bouganin and Lychinin. J. Struct. Biol.?2009, 168, 278–287. 19616098
[60]
Li, X.-D.; Chen, W.-F.; Liu, W.-Y.; Wang, G.-H. Large-scale preparation of two new ribosome-inactivating proteins, Cinnamomin and Camphorin, from the seeds of Cinnamomum camphora. Protein Expr. Purif.?1997, 10, 27–31, doi:10.1006/prep.1996.0706. 9179286
[61]
Helmy, M.; Lombard, S.; Pieroni, G. Ricin RCA60: Evidence of its phospholipase activity. Biochem. Biophys. Res. Commun.?1999, 258, 252–255, doi:10.1006/bbrc.1999.0618. 10329373
[62]
Sharma, N.; Park, S-W.; Vepachedu, R.; Barbieri, L.; Ciani, M.; Stirpe, F.; Savary, B.J.; Vivanco, J.M. Isolation and characterization of a RIP-like protein from Nicotiana tabacum with dual enzymatic activity. Plant Physiol.?2004, 134, 171–181, doi:10.1104/pp.103.030205. 14671015
Vago, R.; Marsden, C.J.; Lord, J.M.; Ippoliti, R.; Flavell, D.J.; Flavell, S.U.; Ceriotti, A.; Fabbrini, M.S. Saporin and ricin A chain follow different intracellular routes to enter the cytosol of intoxicated cells. FEBS J.?2005, 272, 4983–4995, doi:10.1111/j.1742-4658.2005.04908.x. 16176271
[65]
Day, P.J.; Lord, J.M.; Roberts, L.M. The deoxyribonuclease activity attributed to ribosome inactivating proteins is due to contamination. Eur. J. Biochem.?1998, 258, 540–545. 9874221
[66]
Barbieri, L.; Valbonesi, P.; Righi, F.; Zucceri, G.; Monti, F.; Gorini, P.; Samori, B.; Stirpe, F. Polynucleotide: Adenosine glycosidase is the sole activity of ribosome-inactivating proteins DNA. J. Biochem.?2000, 128, 883–889. 11056402
[67]
Sandvig, K.; van Deurs, B. Delivery into cells: Lessons learned from plant and bacterial toxins. Gene Ther.?2005, 12, 865–872, doi:10.1038/sj.gt.3302525. 15815697
[68]
Spooner, R.A; Watson, P.D; Marsden, C.J.; Smith, D.C.; Moore, K.A.H.; Cook, J.P.; Lord, J.M.; Roberts, L.M. Protein disulphide isomerase reduces ricin to its A and B chains in the endoplasmic reticulum. Biochem. J.?2004, 383, 285–293, doi:10.1042/BJ20040742. 15225124
[69]
Deeks, E.D.; Cook, J.P.; Day, P.J.; Smith, D.C.; Roberts, L.M.; Lord, J.M. The low lisine content of ricin A chain reduces the risk of proteolytic degradation after translocation from the endoplasmic reticulum to the cytosol. Biochemistry.?2002, 41, 3405–3413. 11876649
[70]
Lillis, A.P.; Van Duyn, L.B.; Murphy-Ullrich, J.E.; Strickland, D.K. LDL Receptor Related Protein 1: Unique tissue-specific functions revealed by selective gene knockout studies. Physiol. Rev.?2008, 88, 887–918, doi:10.1152/physrev.00033.2007. 18626063
[71]
Rajagopal, V.; Kreitman, J.K. Recombinant toxins that bind to the urokinase receptor are cytotoxic without requiring binding to the a2-macroglobulin receptor. J. Biol. Chem.?2000, 275, 7566–7573, doi:10.1074/jbc.275.11.7566. 10713063
[72]
Fabbrini, M.S.; Carpani, D.; Bello-Rivero, I.; Soria, M.R. The amino-terminal fragment of human urokinase directs a recombinant chimeric toxin to target cells: Internalization is toxin-mediated. FASEB J.?1997, 11, 1169–1176. 9367352
[73]
Ippoliti, R.; Lendaro, E.; Benedetti, P.A.; Torrisi, M.R.; Belleudi, F.; Carpani, D.; Soria, M.R.; Fabbrini, M.S. Endocytosis of a chimera between human pro-urokinase and the plant toxin saporin: An unusual internalization mechanism. FASEB J.?2000, 14, 1335–1344. 10877826
[74]
Wales, R.; Roberts, L.M.; Lord, J.M. Addition of an endoplasmic reticulum retrieval sequence to ricin A chain significantly increases its cytotoxicity to mammalian cells. J. Biol. Chem.?1993, 268, 23986–23990. 8226941
[75]
Geden, S.; Gardner, R.; Fabbrini, M.S.; Ohashi, M.; Phanstiel, I.O.; Teter, K. Lipopolyamine treatment increases the efficacy of intoxication with saporin and an anticancer saporin conjugate. FEBS J.?2007, 274, 4825–4836. 17714513
[76]
Fabbrini, M.S.; Carpani, D.; Soria, M.R.; Ceriotti, A. Cytosolic immunization allows the expression of preATF-saporin chimeric toxin in eukaryotic cells. FASEB J.?2000, 14, 391–398. 10657995
[77]
Zhang, F; Sun, S; Feng, D; Zhao, W.L.; Sui, S.F. A novel strategy for the invasive toxin: Hijacking exosome-mediated intercellular trafficking. Traffic?2009, 10, 411–424, doi:10.1111/j.1600-0854.2009.00879.x. 19192252
[78]
Chan, W.L.; Shaw, P.C.; Tam, S.C.; Jacobsen, C.; Gliemann, J.; Nielsen, M.S. Trichosanthin interacts with and enters cells via LDL receptor family members. Biochem. Biophys. Res. Commun.?2000, 270, 453–457, doi:10.1006/bbrc.2000.2441. 10753646
[79]
Rosenblum, M.G.; Cheung, L.H.; Liu, Y.; Marks, J.W. Design, expression, Purification and characterization, in vitro and in vivo, of an antimelanoma single-chain Fv antibody fused to the toxin gelonin. Canc. Res.?2003, 63, 3995–4002.
[80]
Vallera, D.A.; Oh, S.; Chen, H.; Shu, Y.; Frankel, A.E. Bioengineering a unique deimmunized bispecific targeted toxin that simultaneously recognizes human CD22 and CD19 receptors in a mouse model of B-cell metastases. Mol. Canc. Ther.?2010, 9, 1872–1883, doi:10.1158/1535-7163.MCT-10-0203.
[81]
Amessou, M.; Fradagrada, A.; Falguières, T.; Lord, J.M.; Smith, D.C.; Roberts, L.M.; Lamaze, C.; Johannes, L. Syntaxin 16 and syntaxin 5 are required for efficient retrograde transport of several exogenous and endogenous cargo proteins. J. Cell Sci.?2007, 120, 1457–1468, doi:10.1242/jcs.03436. 17389686
[82]
Wesche, J.; Rapak, A.; Olsnes, S. Dependence of ricin toxicity on translocation of the toxin A-chain from the endoplasmic reticulum to the cytosol. J. Biol. Chem.?1999, 274, 34443–34449, doi:10.1074/jbc.274.48.34443. 10567425
[83]
Mayerhofer, P.U.; Cook, J.P.; Wahlman, J.; Pinheiro, T.T.; Moore, K.A.; Lord, J.M.; Johnson, A.E.; Roberts, L.M. Ricin A chain insertion into endoplasmic reticulum membranes is triggered by a temperature increase to 37 oC. J. Biol. Chem.?2009, 284, 10232–10242. 19211561
[84]
Li, S.; Spooner, R.A.; Allen, S.C.; Guise, C.P.; Ladds, G.; Schn?der, T.; Schmitt, M.J.; Lord, J.M.; Roberts, L.M. Folding-competent and folding-defective forms of ricin A chain may have different fates. Mol. Biol. Cell.?2010, 21, 2543–2554, doi:10.1091/mbc.E09-08-0743. 20519439
[85]
Spooner, R.A.; Hart, P.J.; Cook, J.P.; Pietroni, P.; Rogon, C.; H?hfeld, J.; Roberts, L.M.; Lord, J.M. Cytosolic chaperones influence the fate of a toxin dislocated from the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA?2008, 105, 17408–17413, doi:10.1073/pnas.0809013105. 18988734
[86]
Austin, C.D.; Wen, X.; Gazzard, L.; Nelson, C.; Scheller, R.H.; Scales, S.J. Oxidizing potential of endosomes and lysosomes limits intracellular cleavage of disulfide-based antibody-drug conjugates. Proc. Natl. Acad. Sci. USA?2005, 102, 17987–17992, doi:10.1073/pnas.0509035102. 16322102
[87]
Bellisola, G.; Fracasso, G.; Ippoliti, R.; Menestrina, G.; Rosén, A.; Soldà, S.; Udali, S.; Tomazzolli, R.; Tridente, G.; Colombatti, M. Reductive activation of ricin and ricin A-chain immunotoxins by protein disulfide isomerase and thioredoxin reductase. Biochem. Pharmacol.?2004, 67, 1721–1731, doi:10.1016/j.bcp.2004.01.013. 15081871
[88]
Zarling, J.M.; Moran, P.A.; Haffar, O.; Sias, J.; Richman, D.D.; Spina, C.A.; Myers, D.E.; Kuebelbeck, V.; Ledbetter, J.A.; Uckun, F.M. Inhibition of HIV replication by pokeweed antiviral protein targeted to CD4+ cells by monoclonal antibodies. Nature?1990, 347, 92–95, doi:10.1038/347092a0. 1975641
[89]
McGrath, M.S.; Hwang, K.M.; Caldwell, S.E.; Gaston, I.; Luk, K.C.; Wu, P.; Ng, W.L.; Crowe, S.; Daniels, J.; Marsh, J. GLQ223: An inhibitor of human immunodeficiency virus replication in acutely and chronically infected cells of lymphocyte and mononuclear phagocyte lineage. Proc. Natl. Acad. Sci. USA.?1989, 86, 2844–2848, doi:10.1073/pnas.86.8.2844. 2704750
[90]
Byers, V.S.; Levin, A.S.; Malvino, A.; Waites, L.A.; Robins, R.A.; Baldwin, R.W. A phase II study of effect of addition of trichosanthin to zidovudine in patients with HIV disease and failing antiretroviral agents. AIDS Res. Hum. Retrovir.?1994, 10, 413–420, doi:10.1089/aid.1994.10.413.
[91]
Yeung, H.W.; Li, W.W.; Feng, Z.; Barbieri, L.; Stirpe, F. Trichosanthin, alpha-momorcharin and beta-momorcharin: Identity of abortifacient and ribosome-inactivating proteins. Int. J. Pept. Protein Res.?1988, 31, 265–268. 3372132
[92]
Battelli, M.G.; Mantacuti, V.; Stirpe, F. High sensitivity of cultured human trophoblasts to ribosome-inactivating proteins. Exp. Cell Res.?1992, 201, 109–112, doi:10.1016/0014-4827(92)90353-A. 1612115
[93]
Audi, J.; Belson, M.; Patel, M.; Schier, J.; Osterloh, J. Ricin poisoning: A comprehensive review. JAMA?2005, 294, 2342–2351, doi:10.1001/jama.294.18.2342. 16278363
[94]
Fredriksson, S.A.; Hulst, A.G.; Artursson, E.; de Jong, A.L.; Nilsson, C.; van Baar, B.L. Forensic identification of neat ricin and of ricin from crude castor bean extracts by mass spectrometry. Anal. Chem.?2005, 77, 1545–1555, doi:10.1021/ac048756u. 15762556
[95]
Rubina, A.Y.; Dyukova, V.I.; Dementieva, E.I.; Stomakhin, A.A.; Nesmeyanov, V.A.; Grishin, E.V.; Zasedatelev, A.S. Quantitative immunoassay of biotoxins on hydrogelbased protein microchips. Anal. Biochem.?2005, 340, 317–329, doi:10.1016/j.ab.2005.01.042. 15840505
[96]
Guo, J.W.; Shen, B.F.; Feng, J.N.; Sun, Y.X.; Yu, M.; Hu, M.R. A novel neutralizing monoclonal antibody against cell-binding polypeptide of ricin. Hybridoma (Larchmt)?2005, 24, 263–266, doi:10.1089/hyb.2005.24.263.
[97]
Vitetta, E.S.; Smallshaw, J.E.; Coleman, E.; Jafri, H.; Foste, C.; Munford, R.; Schindler, J. A pilot clinical trial of a recombinant ricin vaccine in normal humans. Proc. Natl. Acad. Sci. USA?2006, 103, 2268–2273, doi:10.1073/pnas.0510893103. 16461456
[98]
Marconescu, P.S.; Smallshaw, J.E.; Pop, L.M.; Ruback, S.L.; Vitetta, E.S. Intradermal administration of RiVax protects mice from mucosal and systemic ricin intoxication. Vaccine?2010, 28, 5315–5322, doi:10.1016/j.vaccine.2010.05.045. 20562013
[99]
Campoli, M.; Ferris, R.; Ferrone, S.; Wang, X. Immunotherapy of malignant disease with tumor antigen-specific monoclonal antibodies. Clin. Canc. Res.?2010, 16, 11–20, doi:10.1158/1078-0432.CCR-09-2345.
Huston, J.S.; Mudgett-Hunter, M.; Tai, M.S.; McCartney, J.; Warren, F.; Haber, E.; Oppermann, H. Protein engineering of single-chain Fv analogs and fusion proteins. Meth. Enzymol.?1991, 203, 46–88. 1762568
[102]
Huston, J.S.; Tai, M.S.; McCartney, J.; Keck, P.; Oppermann, H. Antigen recognition and targeted delivery by the single-chain Fv. Cell Biophys.?1993, 22, 189–224. 7889539
[103]
Kreitman, R.J. Recombinant immunotoxins containing truncated bacterial toxins for the treatment of hematologic malignancies. BioDrugs?2009, 23, 1–13, doi:10.2165/00063030-200923010-00001. 19344187
Savage, P; Rowlinson-Busza, G.; Verhoeyen, M.; Spooner, R.A.; So, A.; Windust, J.; Davis, P.J.; Epenetos, A.A. Construction, characterisation and kinetics of a single chain antibody recognising the tumour associated antigen placental alkaline phosphatase. Br. J. Canc.?1993, 68, 738–742, doi:10.1038/bjc.1993.420.
[107]
Batra, S.K.; Jain, M.; Wittel, U.A.; Chauhan, S.C.; Colcher, D. Pharmacokinetics and biodistribution of genetically engineered antibodies. Curr. Opin. Biotechnol.?2002, 13, 603–608, doi:10.1016/S0958-1669(02)00352-X. 12482521
[108]
Jain, M.; Chauhan, S.C.; Singh, A.P.; Venkatraman, G.; Colcher, D.; Batra, S.K. Penetratin improves tumor retention of single-chain antibodies: A novel step toward optimization of radioimmunotherapy of solid tumors. Canc. Res.?2005, 65, 7840–7846.
[109]
Fabbrini, M.S.; Flavell, D.J.; Ippoliti, R. Bacterial Plant and Animal Toxins; Ascenzi, P., Polticelli, F., Visca, P., Eds.; Research Signpost: Kerala, India, 2003; Chapter 4, p. 69.
[110]
Amlot, P.L.; Stone, M.J.; Cunningham, D.; Fay, J.; Newman, J.; Collins, R.; May, R.; McCarthy, M.; Richardson, J.; Ghetie, V.; et al. A phase I study of an anti-CD22-deglycosylated ricin A chain immunotoxin in the treatment of B-cell lymphomas resistant to conventional therapy. Blood?1993, 82, 2624–2633. 8219217
Flavell, D.J.; Noss, A.; Pulford, K.; Flavell, S. Systemic therapy with 3BIT, a triple combination cocktail of anti-CD19, -CD22, and -CD38-saporin immunotoxins, is curative of human B-cell lymphoma in severe combined immunodeficient mice. Canc. Res.?1997, 57, 4824–4829.
Pagliaro, L.C.; Liu, B.; Bunker, R.; Andreef, M.; Freireich, E.J.; Scheinberg, D.A.; Rosenblum, M.G. Humanized M195 monoclonal antibody conjugated to recombinant gelonin: An anti-CD33 immunotoxin with antileukemic activity. Clin. Canc. Res.?1998, 4, 1971–1976.
[115]
Pennell, C.A.; Pauza, M.E. CD7-specific single chain Fv immunotoxins. Design and expression. Meth. Mol. Biol.?2001, 166, 17–29.
[116]
Chignola, R.; Anselmi, C.; Dalla Serra, M.; Franceschi, A.; Fracasso, G.; Pasti, M.; Chiesa, E.; Lord, J.M.; Tridente, G.; Colombatti, M. Self-potentiation of ligand-toxin conjugates containing ricin A chain fused with viral structures. J. Biol. Chem.?1995, 270, 23345–23351, doi:10.1074/jbc.270.40.23345. 7559491
[117]
Tazzari, P.L.; Polito, L.; Bolognesi, A.; Pistillo, M.P.; Capanni, P.; Palmisano, G.L.; Lemoli, R.M.; Curti, A.; Biancone, L.; Camussi, G.; Conte, R.; Ferrara, G.B.; Stirpe, F. Immunotoxins containing recombinant anti-CTLA-4 single-chain fragment variable antibodies and saporin: in vitro results and in vivo effects in an acute rejection model. J. Immunol.?2001, 167, 4222–4229. 11591743
[118]
Piazza, T.; Cha, E.; Bongarzone, I.; Canevari, S.; Bolognesi, A.; Polito, L.; Bargellesi, A.; Sassi, F.; Ferrini, S.; Fabbi, M. Internalization and recycling of ALCAM/CD166 detected by a fully human single-chain recombinant antibody. J. Cell Sci.?2005, 118, 1515–1525, doi:10.1242/jcs.02280. 15769845
[119]
Fuchs, H.; Bachran, C.; Li, T.; Heisler, I.; Durkop, H.; Sutherland, M. A cleavable molecular adapter reduces side effects and concomitantly enhances efficacy in tumor treatment by targeted toxins in mice. J. Control. Release?2007, 117, 342–350, doi:10.1016/j.jconrel.2006.11.019. 17207883
[120]
O’Hare, M.; Brown, A.N.; Hussain, K.; Gebhardt, A.; Watson, G.; Roberts, L.M. Cytotoxicity of a recombinant ricin-A-chain fusion protein contain a proteolytically-cleavable spacer sequence. FEBS Lett.?1990, 273, 200–204, doi:10.1016/0014-5793(90)81084-2. 2121540
Chaddock, J.A; Lord, J.M; Hartley, M.R; Roberts, L.M. Pokeweed antiviral protein (PAP) mutations which permit E. coli growth do not eliminate catalytic activity towards prokaryotic ribosomes. Nucl. Acid. Res.?1994, 22, 1536–1540, doi:10.1093/nar/22.9.1536.
[123]
Kataoka, J.; Ago, H.; Habuka, N.; Furano, M.; Masuta, C.; Miyano, M.; Koiwai, A. Expression of a pokeweed antiviral protein in Escherichia coli and its characterization. FEBS Lett.?1990, 320, 31–34.
[124]
Liu, L.; Wang, R.; He, W.; He, F.; Huang, G. Cloning and soluble expression of mature α-luffin from Luffa cylindrica and its antitumor activities in vitro. Acta Biochim. Biophys. Sin. (Shanghai)?2010, 42, 585–592, doi:10.1093/abbs/gmq056. 20705600
[125]
Huang, J.; Villemain, J; Padilla, R; Sousa, R. Mechanisms by which T7 lysozyme specifically regulates T7 RNA polymerase during different phases of transcription. J. Mol. Biol.?1999, 293, 457–475, doi:10.1006/jmbi.1999.3135. 10543943
[126]
Giansanti, F.; Di Leandro, L.; Koutris, I.; Pitari, G.; Fabbrini, M.S.; Lombardi, A.; Flavell, D.J.; Flavell, S.U.; Gianni, S.; Ippoliti, R. Engineering a switchable toxin: The potential use of PDZ domains in the expression, targeting and activation of modified Saporin variants. Protein Eng. Des. Sel.?2010, 23, 61–68, doi:10.1093/protein/gzp070. 19933699
[127]
Pitcher, C.; Roberts, L.; Fawell, S.; Zdanovsky, A.G.; FitzGerald, D.J.; Lord, J.M. Generation of a potent chimeric toxin by replacement of domain III of Pseudomonas exotoxin with ricin A chain KDEL. Bioconjug. Chem.?1995, 6, 624–629, doi:10.1021/bc00035a018. 8974463
[128]
Dore, J.M.; Gras, E.; Wijdenes, J. Expression and activity of a recombinant chimeric protein composed of pokeweed antiviral protein and of human interleukin-2. FEBS Lett.?1997, 402, 50–52, doi:10.1016/S0014-5793(96)01493-7. 9013857
[129]
Qi, L.; Nett, T.M.; Allen, M.C.; Sha, X.; Harrison, G.S.; Federick, B.A.; Crawford, E.D.; Glode, L.M. Binding and cytotoxicity of conjugated and recombinant fusion proteins targeted to the Gonadotropin-releasing hormone receptor. Canc. Res.?2004, 64, 2090–2095, doi:10.1158/0008-5472.CAN-3192-2.
[130]
Lappi, D.A.; Ying, W.; Barthelemy, I.; Martineau, D.; Prieto, I.; Benatti, L.; Soria, M.R.; Baird, A. Expression and activities of a recombinant basic fibroblast growth factor-saporin fusion protein. J. Biol. Chem.?1994, 269, 12552–12558. 8175664
[131]
Davol, P.A.; Beitz, J.G.; Mohler, M.; Ying, W.; Cook, J.; Lappi, D.A.; Frackelton, A.R., Jr. Saporin toxins directed to basic fibroblast growth factor receptors effectively target human ovarian teratocarcinoma in an animal model. Cancer?1995, 76, 79–85, doi:10.1002/1097-0142(19950701)76:1<79::AID-CNCR2820760111>3.0.CO;2-G. 8630880
[132]
Davol, P.A.; Garza, S.; Frackelton, A.R., Jr. Combining suramin and a chimeric toxin directed to basic fibroblast growth factor receptors increases therapeutic efficacy against human melanoma in an animal model. Cancer?1999, 86, 1733–1741, doi:10.1002/(SICI)1097-0142(19991101)86:9<1733::AID-CNCR15>3.0.CO;2-H. 10547546
[133]
Chandler, L.A.; Sosnowski, B.A.; McDonald, J.R.; Price, J.E.; Aukerman, S.L.; Baird, A.; Pierce, G.F.; Houston, L.L. Targeting tumor cells via EGF receptors: Selective toxicity of an HBEGF-toxin fusion protein. Int. J. Canc.?1998, 78, 106–111, doi:10.1002/(SICI)1097-0215(19980925)78:1<106::AID-IJC17>3.0.CO;2-9.
[134]
Ellis, V.; Scully, M.F.; Kakkar, V.V. Plasminogen activation initiated by single-chain urokinase-type plasminogen activator.Potentiation by U937 monocytes. J. Biol. Chem.?1989, 264, 2185–2188. 2521625
[135]
Ragno, P. The urokinase receptor ligand: A ligand or a receptor? Story of a sociable molecule. Cell. Mol. Life Sci.?2006, 63, 1028–1037, doi:10.1007/s00018-005-5428-1. 16465446
[136]
Stephens, R.W.; Nielsen, H.J.; Christensen, I.J.; Thorlacius-Ussing, O.; S?rensen, S.; Dan?, K.; Brünner, N. Plasma urokinase receptor levels in patients with colorectal cancer: Relationship to prognosis. J. Natl. Canc. Inst.?1999, 91, 869–874, doi:10.1093/jnci/91.10.869.
[137]
Mustijoki, S.; Alitalo, R.; Stephens, R.W.; Vaheri, A. Blast cell-surface and plasma soluble urokinase receptor in acute leukaemia patients: relationship to classification and response to therapy. Thromb. Haemost.?1999, 81, 705–710. 10365741
[138]
Sier, C.F.; Sidenius, N.; Mariani, A.; Aletti, G.; Agape, V.; Ferrai, A.; Casetta, G.; Stephens, R.W.; Brünner, N.; Blasi, F. Presence of urokinase-type plasminogen activator receptor in urine of cancer patients and its possibile clinical relevance. Lab. Invest.?1999, 79, 717–722. 10378514
[139]
Rasch, M.G.; Lund, I.K.; Almasi, C.E.; H?yer-Hansen, G. Intact and cleaved uPAR forms: Diagnostic and prognostic value in cancer. Front. Biosc.?2008, 13, 6752–6762.
[140]
Degryse, B.; Fernandez-Recio, J.; Citro, V.; Blasi, F.; Cubellis, M.V. In silico docking of urokinase plasminogen activator and integrins. BMC Bioinform.?2008, 9, S8.
[141]
Potala, S.; Sahoo, S.K.; Verma, R.S. Target therapy of cancer using diphtheria toxin-derived immunotoxins. Drug. Discov. Today?2008, 13, 809–815.
[142]
Vallera, D.A.; Li, C.; Jin, N.; Panoskaltis-Mortari, A.; Hall, W.A. Targeting urokinase-type plasminogen activator receptor on human glioblastoma tumors with diphtheria toxin fusion protein DTAT. J. Nat Canc. Inst.?2002, 94, 597–606, doi:10.1093/jnci/94.8.597.
[143]
Ramage, J.G.; Vallera, D.A.; Black, J.H.; Aplan, P.D.; Kees, U.R.; Frankel, A.E. The diphtheria toxin/urokinase fusion protein (DTAT) is selectively toxic to CD87 expressing leukemic cells. Leuk. Res.?2003, 27, 79–84, doi:10.1016/S0145-2126(02)00077-2. 12479856
[144]
Rustamzadeh, E.; Hall, W.A.; Todhunter, D.A.; Vallera, V.D.; Low, W.C.; Liu, H.; Panoskaltis-Mortari, A.; Vallera, D.A. Intracranial therapy of glioblastoma with the fusion protein DTAT in immunodeficient mice. Int. J. Canc.?2007, 120, 411–419, doi:10.1002/ijc.22278.
[145]
Todhunter, D.A.; Mhall, W.A; Rustamzedeh, E.; Shu, Y; Doumbia, S.O; Vallera, D.A. A bispecific immunotoxin (DTAT13) targeting human IL-13 receptor (IL-13R) and urokinase-type plasminogen activator receptor (uPAR) in a mouse xenograft model. Protein Eng. Des. Sel.?2004, 17, 157–164, doi:10.1093/protein/gzh023. 15047912
[146]
Rustamzadeh, E.; Vallera, D.A.; Todhunter, D.A.; Low, W.C.; Panoskaltis-Mortari, A.; Hall, W.A. Immunotoxin pharmacokinetics: a comparison of the anti-glioblastoma bi-specific fusion protein (DTAT13) to DTAT and DTL13. J. Neurooncol.?2006, 77, 257–266, doi:10.1007/s11060-005-9051-7. 16314943
[147]
Frankel, A.E. Reducing the Immune Response to Immunotoxin. Clinic. Canc. Res.?2004, 10, 16–18, doi:10.1158/1078-0432.CCR-1160-3.
[148]
Hall, P.D.; Virella, G.; Willoughby, T.; Atchley, D.H.; Kreitman, R.J.; Frankel, A.E. Antibody Response to DT-GM, a novel fusion toxin consisting of truncated diphtheria toxin (DT) linked to human granulocyte-macrophage colony stimulating factor (GM), during a phase I trial of patient with relapsed or refractory acute myeloid leukaemia. Clin. Immunol.?2001, 100, 191–199, doi:10.1006/clim.2001.5066. 11465948
[149]
Deckert, P.M. Current constructs and targets in clinical development for antibody-based cancer therapy. Curr. Drugs Targets?2009, 10, 158–175, doi:10.2174/138945009787354502.
[150]
Carter, P.J.; Senter, P.D. Antibody-drug conjugates for cancer therapy. Canc. J.?2008, 14, 154–169, doi:10.1097/PPO.0b013e318172d704.
[151]
Whitlow, M.; Bell, B.A.; Feng, S.L.; Filpula, D.; Hardman, K.D.; Hubert, S.L.; Rollence, M.L.; Wood, J.F.; Schott, M.E.; Milenic, D.E.; Yokota, T.; Schlom, J. An improved linker for single-chain Fv with reduced aggregation and enhanced proteolytic stability. Protein Eng.?1993, 6, 989–995, doi:10.1093/protein/6.8.989. 8309948
[152]
Kim, J.H.; Weaver, R.F. Construction of a recombinant expression plasmid encoding a staphylococcal protein A-ricin A fusion protein. Gene?1988, 68, 315–321, doi:10.1016/0378-1119(88)90034-0. 3065147
[153]
Cao, Y.; Marks, J.D.; Marks, J.W.; Cheung, L.H.; Sehoon, K.; Rosenblum, M.G. Construction and characterization of novel, recombinant immunotoxins targeting the Her2/neu oncogene product: in vitro and in vivo studies. Canc. Res.?2009, 69, 8987–8995, doi:10.1158/0008-5472.CAN-09-2693.
[154]
Nimmanapalli, R.; Lyu, M.-A.; Du, M.; Keating, M.J.; Rosenblum, M.G.; Gandhi, V. The growth factor fusion construct containing B-lymphocyte stimulator (BLyS) and the toxin rGel induces apoptosis specifically in BAFF-R-positive CLL cells. Blood?2007, 109, 2557–2564, doi:10.1182/blood-2006-08-042424. 17119117
[155]
Lyu, M.-A.; Cheung, L.H.; Hittelman, W.N.; Marks, J.W.; Aguiar, R.C.; Rosenblum, M.G. The rGel/BLyS fusion toxin specifically targets malignant B cells expressing the BLyS receptors BAFF-R, TACI, and BCMA. Mol. Canc. Ther.?2007, 6, 460–470, doi:10.1158/1535-7163.MCT-06-0254.
[156]
Wen, X.; Lyu, M.-A.; Rui, Z.; Lu, W.; Huang, Q.; Liang, D.; Rosenblum, M.G.; Li, C. Biodistribution, pharmacokinetics, and nuclear imaging studies of 111In-labeled rGel/BLyS fusion toxin in SCID mice bearing B cell lymphoma. Mol. Imag. Biol.?2010. in press.
[157]
Lyu, M.-A.; Rai, D.; Ahn, K.S.; Sung, B.; Cheung, L.H.; Marks, J.W.; Aggarwall, B.B.; Aguiar, R.C.T.; Gandhi, V.; Rosenblum, M.G. The rGel/BLyS fusion toxin inhibits diffuse large B-cell lymphoma growth in vitro and in vivo. Neoplasia?2010, 12, 366–375. 20454508
[158]
Thorpe, P.E. Vascular targeting agents as cancer therapeutics. Clin. Canc. Res.?2004, 10, 415–427, doi:10.1158/1078-0432.CCR-0642-03.
[159]
Kim, S.; Mohamedali, K.A.; Cheung, L.H.; Rosenblum, M.G. Overexpression of biologically active VEGF121 fusion proteins in Escherichia coli. J. Biotechnol.?2007, 128, 638–647, doi:10.1016/j.jbiotec.2006.11.027. 17218033
[160]
Smagur, A.; Boyko, M.M.; Biront, N.V.; Cichoń, T.; Szala, S. Chimeric protein ABRaA-VEGF121 is cytotoxic towards VEGFR-2-expressing PAE cells and inhibits B16-F10 melanoma growth. Acta Biochim. Pol.?2009, 56, 115–124. 19252752
[161]
Cook, J.P.; Savage, P.M.V.; Lord, J.M.; Roberts, L.M. Biologically active interleukin 2-ricin A chain fusion proteins may require intracellular proteolytic cleavage to exhibit a cytotoxic effect. Bioconjug. Chem.?1993, 4, 440–447, doi:10.1021/bc00024a005. 8305513
[162]
Cereghino, J.L.; Cregg, J.M. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol. Rev.?2000, 24, 45–66, doi:10.1111/j.1574-6976.2000.tb00532.x. 10640598
[163]
Rajamohan, F.; Doumbia, S.O.; Engstrom, C.R.; Pendergras, S.L.; Maher, D.L.; Uckun, F.M. Expression of biologically active recombinant pokeweed antiviral protein in methylotrophic yeast Pichia pastoris. Protein Expr. Purif.?2000, 18, 193–201, doi:10.1006/prep.1999.1181. 10686150
[164]
Woo, J.H.; Liu, Y.; Mathias, A.; Stavrou, S.; Wang, Z.; Thompson, J.; Neville, D.M., Jr. Gene optimization is necessary to express a bivalent anti-human anti-T cell immunotoxin in Pichia pastoris. Protein Expr. Purif?2002, 25, 270–282, doi:10.1016/S1046-5928(02)00009-8. 12135560
[165]
Della Cristina, P.; Lombardi, A.; Ippoliti, R.; Flavell, D.J.; Flavell, S.U.; Cerotti, A.; Colombatti, M.; Fabbrini, M.S. Systematic comparison between single-chain fusion toxin contructs containing saporin or PEA produced in different expression systems. ?2010. in preparation.
[166]
Holmes, M.A.; Foote, J. Structural consequences of humanizing an antibody. J. Immunol.?1997, 158, 2192–2201. 9036965
[167]
Presta, L.G. Engineering of therapeutic antibodies to minimize immunogenicity and optimize function. Adv. Drug Deliv. Rev.?2006, 58, 640–656, doi:10.1016/j.addr.2006.01.026. 16904789
[168]
Sharkey, R.M.; Goldenberg, D.M. Use of antibodies and immunoconjugates for the therapy of more accessible cancers. Adv. Drug Deliv. Rev.?2008, 60, 1407–1420, doi:10.1016/j.addr.2008.04.011. 18508155
[169]
Kreitman, R.J.; Wilson, W.H.; White, J.D.; Stetler-Stevenson, M.; Jaffe, E.S.; Giardina, S.; Waldmann, T.A.; Pastan, I. Phase I trial of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) in patients with hematologic malignancies. J. Clin. Oncol.?2000, 18, 1622–1636. 10764422
[170]
Hassan, R.; Bullock, S.; Premkumar, A.; Kreitman, R.J.; Kindler, H.; Willingham, M.C.; Pastan, I. Phase I study of SS1P a recombinant anti-mesothelin immunotoxin given as a bolus IV infusion to patients with mesothelin-expressing mesothelioma, ovarian and pancreatic cancers. Clin. Canc. Res.?2007, 13, 5144–5149, doi:10.1158/1078-0432.CCR-07-0869.
[171]
Molineux, G. Pegylation:engineering improved biopharmaceuticals for oncology. Pharmacotherapy?2003, 23, S3–S8, doi:10.1592/phco.23.9.3S.32886.
[172]
Onda, M.; Nagata, S.; FitzGerald, D.J.; Beers, R.; Fisher, R.J.; Vincent, J.J.; Lee, B.; Nakamura, M.; Hwang, J.; Kreitman, R.J.; Hassan, R.; Pastan, I. Characterization of the B cell epitopes associated with a truncated form of Pseudomonas exotoxin (PE38) used to make immunotoxins for the treatment of cancer patients. J. Immunol.?2006, 177, 8822–8834. 17142785
[173]
Onda, M.; Beers, R.; Xiang, L.; Nagata, S.; Wang, Q.; Pastan, I. An immunotoxin with greatly reduced immunogenicity by identification and removal of B cell epitopes. Proc. Natl. Acad. Sci. USA?2008, 105, 11311–11316, doi:10.1073/pnas.0804851105. 18678888
[174]
Chan, S.H.; Shaw, P.C.; Mulot, S.F.; Xu, L.H.; Chan, W.L.; Tam, S.C.; Wong, K.B. Engineering of a mini-trichosanthin that has lower antigenicity by deleting its C-terminal amino acid residues. Biochem. Biophys. Res. Commun.?2000, 270, 279–285, doi:10.1006/bbrc.2000.2395. 10733940
[175]
Bolognesi, A.; Polito, L.; Olivieri, F.; Valbonesi, P.; Barbieri, L.; Battelli, M.G.; Carusi, M.V.; Benvenuto, E.; Del Vecchio Bianco, F.; Di Maro, A.; Parente, A.; Di Loreto, M.; Stirpe, F. New ribosome-inactivating proteins with polynucleotide: Adenosine glycosidase and antiviral activities from Basella rubra L.and Bougainvillea spectabilis Willd. Planta?1997, 203, 422–429, doi:10.1007/s004250050209. 9421927
[176]
Cizeau, J.; Grenkow, D.M.; Brown, J.G.; Entwistle, J.; McDonald, G.C. Engineering and biological characterization of VB6-845, an anti-EpCAM immunotoxin containing a T-cell epitope -depleted variant of the plant toxin bouganin. J. Immunother.?2009, 32, 574–584, doi:10.1097/CJI.0b013e3181a6981c. 19483652
[177]
MacDonald, G.C.; Rasamoelisolo, M.; Entwistle, J.; Cizeau, J.; Bosc, D.; Cuthbert, W.; Kowalski, M.; Spearman, M.; Glover, N. A phase I clinical study of VB4-845: Weekly intratumoral administration of an anti-EpCAM recombinant fusion protein in patients with squamous cell carcinoma of the head and neck. Drug. Des. Devel. Ther.?2009, 6, 105–114.
[178]
MacDonald, G.C.; Rasamoelisolo, M.; Entwistle, J.; Cuthbert, W.; Kowalski, M.; Spearman, M.; Glover, N. A phase I clinical study of intratumorally administered VB4-845, an anti-epithelial cell adhesion molecule recombinant fusion protein, in patients with squamous cell carcinoma of the head and neck. Med. Oncol.?2009, 26, 257–264, doi:10.1007/s12032-008-9111-x. 19016010
[179]
Baluna, R.; Rizo, J.; Gordon, B.E.; Ghetie, V.; Vitetta, E.S. Evidence for a structural motif in toxins and interleukin-2 that may be responsible for binding to endothelial cells and initiating vascular leak syndrome. Proc. Natl. Acad. Sci. USA.?1999, 96, 3957–3962, doi:10.1073/pnas.96.7.3957. 10097145
[180]
Baluna, R.; Coleman, E.; Jones, C.; Ghetie, V.; Vitetta, E.S. The effect of a monoclonal antibody coupled to ricin A chain-derived peptides on endothelial cells in vitro: Insights into toxin mediated vascular damage. Exp. Cell Res.?2000, 258, 417–424, doi:10.1006/excr.2000.4954. 10896793
Coulson, B.S.; Londrigan, S.L.; Lee, D.J. Rotavirus contains integrin ligand sequences and a disintegrin-like domain that are implicated in virus entry into cells. Proc. Natl. Acad. Sci. USA?1997, 94, 5389–5394, doi:10.1073/pnas.94.10.5389. 9144247
[183]
Smallshaw, J.E.; Ghetie, V.; Rizo, J.; Fulmer, J.R.; Trahan, L.L.; Ghetie, M.A.; Vitetta, E.S. Genetic engineering of an immunotoxin to eliminate pulmonary vascular leak in mice. Nat. Biotechnol.?2003, 21, 387–391, doi:10.1038/nbt800. 12627168
[184]
Messmann, R.A.; Vitetta, E.S.; Headlee, D.; Senderowicz, A.M.; Figg, W.D.; Schindler, J.; Michiel, D.F.; Creekmore, S.; Steinberg, S.M.; Kohler, D.; Jaffe, E.S.; Stetler-Stevenson, M.; Chen, H.; Ghetie, V.; Sausville, E.A. A phase I study of combination therapy with immunotoxins IgG-HD37-deglycosylated ricin A chain (dgA) and IgG-RFB4-dgA (Combotox) in patients with refractory CD19(+), CD22(+) B cell lymphoma. Clin. Canc. Res.?2000, 6, 1302–1313.
[185]
Kuroda, K.; Liu, H.; Kim, S.; Guo, M.; Navarro, V.; Bander, N.H. Saporin toxin-conjugated monoclonal antibody targeting prostate-specific membrane antigen has potent anticancer activity. Prostate?2010, 70, 1286–1294. 20623630
[186]
Yip, W.L.; Weyergang, A.; Berg, K.; T?nnesen, H.H.; Selbo, P.K. Targeted delivery and enhanced cytotoxicity of cetuximab-saporin by photochemical internalization in EGFR-positive cancer cells. Mol Pharm.?2007, 4, 241–245, doi:10.1021/mp060105u. 17263556
[187]
Fuchs, H.; Bachran, D.; Panjideh, H.; Schellmann, N.; Weng, A.; Melzig, M.F.; Sutherland, M.; Bachran, C. Saponins as tools for improved targeted tumor therapies. Curr. Drug Targets?2009, 10, 140–151, doi:10.2174/138945009787354584. 19199910
[188]
Weng, A.; Bachran, C.; Fuchs, H.; Krause, E.; Stephanowitz, H.; Melzig, M.F. Enhancement of saporin cytotoxicity by Gypsophila saponins more than stimulation of endocytosis. Chem. Biol. Interact.?2009, 176, 204–211.
[189]
Bachran, D.; Schneider, S.; Urban, .C; Weng, A.; Melzig, M.F.; Hoffman, C.; Kaufman, A.M.; Fuchs, H. Epidermal growth factor receptor expression affects the efficacy of the combined application of saponin and a targeted toxin on human cervical carcinoma cells. Int. J. Canc.?2010, 127, 1453–1461.
[190]
Bachran, C.; Dürkop, H.; Sutherland, M.; Bachran, D.; Müller, C.; Weng, A.; Melzig, M.F.; Fuchs, H. Inhibition of tumor growth by targeted toxins in mice is dramatically improved by saponinum album in a synergistic way. J. Immunother.?2009, 32, 713–725, doi:10.1097/CJI.0b013e3181ad4052. 19561537
[191]
Ferrari, M. Frontiers in cancer nanomedicine: directing mass transport through biological barriers. Trends Biotechnol.?2010, 28, 181–188, doi:10.1016/j.tibtech.2009.12.007. 20079548
Baird, J.A.; Chandler, L.A.; Sosnowski, B.A. Compositions containing nucleic acids and ligands for therapeutic treatment. US Patent 6,503,886, 13 January 2003.
[194]
Sajja, H.K.; East, M.P.; Mao, H.; Wang, Y.A.; Nie, S.; Yang, L.; Jankun, J.; Hart, R. Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect. Curr. Drug. Discov. Technol.?2009, 6, 43–51, doi:10.2174/157016309787581066. 19275541
[195]
Bar, H.; Yacoby, I.; Benhar, I. Killing cancer cells by targeted drug-carrying phage nanomedicines. BMC Biotechnol.?2008, 8, 37, doi:10.1186/1472-6750-8-37. 18387177
Jankun, J.; Hart, R. Method of delivery of a medicament to a cancer cell using a pathway of plasminogen activator material. US Patent 5,679,350, 21 October 1997.
[198]
Weber, R.; Feng, X.; Foord, O.; Green, L.; Gudas, J.M.; Keyt, B.; Liu, Y.; Rathanaswami, P. Antibodies directed to the deletion mutants of epidermal growth factor receptor and uses thereof. US Patent 7,628,986, 8 December 2009.