Targeted toxins, also known as immunotoxins or cytotoxins, are recombinant molecules that specifically bind to cell surface receptors that are overexpressed in cancer and the toxin component kills the cell. These recombinant proteins consist of a specific antibody or ligand coupled to a protein toxin. The targeted toxins bind to a surface antigen or receptor overexpressed in tumors, such as the epidermal growth factor receptor or interleukin-13 receptor. The toxin part of the molecule in all clinically used toxins is modified from bacterial or plant toxins, fused to an antibody or carrier ligand. Targeted toxins are very effective against cancer cells resistant to radiation and chemotherapy. They are far more potent than any known chemotherapy drug. Targeted toxins have shown an acceptable profile of toxicity and safety in early clinical studies and have demonstrated evidence of a tumor response. Currently, clinical trials with some targeted toxins are complete and the final results are pending. This review summarizes the characteristics of targeted toxins and the key findings of the important clinical studies with targeted toxins in malignant brain tumor patients. Obstacles to successful treatment of malignant brain tumors include poor penetration into tumor masses, the immune response to the toxin component and cancer heterogeneity. Strategies to overcome these limitations are being pursued in the current generation of targeted toxins.
References
[1]
Gensini, G.F.; Conti, A.A.; Lippi, D. The contributions of Paul Ehrlich to infectious disease. J. Infect.?2007, 54, 221–224, doi:10.1016/j.jinf.2004.05.022. 16567000
[2]
Rustamzadeh, E.; Low, W.C.; Vallera, D.A.; Hall, W.A. Immunotoxin therapy for CNS tumor. J. Neurooncol.?2003, 64, 101–116. 12952291
Yokota, T.; Milenic, D.E.; Whitlow, M.; Schlom, J. Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res.?1992, 52, 3402–3408. 1596900
[5]
Jain, R.K. Delivery of novel therapeutic agents in tumors: Physiological barriers and strategies. J. Natl. Cancer Inst.?1989, 81, 570–576, doi:10.1093/jnci/81.8.570. 2649688
Van Meir, E.G.; Hadjipanayis, C.G.; Norden, A.D.; Shu, H.K.; Wen, P.Y.; Olson, J.J. Exciting new advances in neuro-oncology: The avenue to a cure for malignant glioma. CA Cancer J. Clin.?2010, 60, 166–193, doi:10.3322/caac.20069. 20445000
Hall, W.A.; Fodstad, O. Immunotoxins and central nervous system neoplasia. J. Neurosurg.?1992, 76, 1–12, doi:10.3171/jns.1992.76.1.0001. 1727147
[11]
Bidros, D.S.; Vogelbaum, M.A. Novel drug delivery strategies in neuro-oncology. Neurotherapeutics?2009, 6, 539–546, doi:10.1016/j.nurt.2009.04.004. 19560743
Sampson, J.H.; Akabani, G.; Archer, G.E.; Berger, M.S.; Coleman, R.E.; Friedman, A.H.; Friedman, H.S.; Greer, K.; Herndon, J.E., II; Kunwar, S.; et al. Intracerebral infusion of an EGFR-targeted toxin in recurrent malignant brain tumors. Neuro Oncol, 2008, 10, 320–329.
[16]
Sandvig, K.; Olsnes, S. Rapid entry of nicked diphtheria toxin into cells at low pH.Characterization of the entry process and effects of low pH on the toxin molecule. J. Biol. Chem.?1981, 256, 9068–9076. 7263699
[17]
Zovickian, J.; Johnson, V.G.; Youle, R.J. Potent and specific killing of human malignant brain tumor cells by an anti-transferrin receptor antibody-ricin immunotoxin. J. Neurosurg.?1987, 66, 850–861, doi:10.3171/jns.1987.66.6.0850. 3033171
Boquet, P.; Silverman, M.S.; Pappenheimer, A.M., Jr. Interaction of diphtheria toxin with mammalian cell membranes. Prog. Clin. Biol. Res.?1977, 17, 501–509. 928464
[20]
Yamaizumi, M.; Mekada, E.; Uchida, T.; Okada, Y. One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell?1978, 15, 245–250, doi:10.1016/0092-8674(78)90099-5. 699044
[21]
Naglich, J.G.; Metherall, J.E.; Russell, D.W.; Eidels, L. Expression cloning of a diphtheria toxin receptor: Identity with a heparin-binding EGF-like growth factor precursor. Cell?1992, 69, 1051–1061, doi:10.1016/0092-8674(92)90623-K. 1606612
[22]
Greenfield, L.; Johnson, V.G.; Youle, R.J. Mutations in diphtheria toxin separate binding from entry and amplify immunotoxin selectivity. Science?1987, 238, 536–539, doi:10.1126/science.3498987. 3498987
[23]
Johnson, V.G.; Youle, R.J. A point mutation of proline 308 in diphtheria toxin B chain inhibits membrane translocation of toxin conjugates. J. Biol. Chem.?1989, 264, 17739–17744. 2808346
[24]
Johnson, V.G.; Wrobel, C.; Wilson, D.; Zovickian, J.; Greenfield, L.; Oldfield, E.H.; Youle, R. Improved tumor-specific immunotoxins in the treatment of CNS and leptomeningeal neoplasia. J. Neurosurg.?1989, 70, 240–248, doi:10.3171/jns.1989.70.2.0240. 2783608
[25]
Nicholls, P.J.; Youle, R.J. The structure of Pseudomonas exotoxin A as a guide to rational design. Targeted Diagn. Ther.?1992, 7, 439–446. 1633305
Kondo, T.; FitzGerald, D.; Chaudhary, V.K.; Adhya, S.; Pastan, I. Activity of immunotoxins constructed with modified Pseudomonas exotoxin A lacking the cell recognition domain. J. Biol. Chem.?1988, 263, 9470–9475. 3132465
Brinkmann, U.; Pai, L.H.; FitzGerald, D.J.; Willingham, M.; Pastan, I. B3(Fv)-PE38KDEL, a single-chain immunotoxin that causes complete regression of a human carcinoma in mice. Proc. Natl. Acad. Sci. USA?1991, 88, 8616–8620, doi:10.1073/pnas.88.19.8616. 1924323
[30]
Phillips, P.C.; Levow, C.; Catterall, M.; Colvin, O.M.; Pastan, I.; Brem, H. Transforming growth factor-alpha-Pseudomonas exotoxin fusion protein (TGF-alpha-PE38) treatment of subcutaneous and intracranial human glioma and medulloblastoma xenografts in athymic mice. Cancer Res.?1994, 54, 1008–1015. 8313355
[31]
Rand, R.W.; Kreitman, R.J.; Patronas, N.; Varricchio, F.; Pastan, I.; Puri, R.K. Intratumoral administration of recombinant circularly permuted interleukin-4-Pseudomonas exotoxin in patients with high-grade glioma. Clin. Cancer Res.?2000, 6, 2157–2165. 10873064
[32]
Frankel, A.E.; Tagge, E.P.; Willingham, M.C. Clinical trials of targeted toxins. Semin. Cancer Biol.?1995, 6, 307–317, doi:10.1006/scbi.1995.0039. 8562908
[33]
Kreitman, R.J.; Pastan, I. Immunotoxins in the treatment of hematologic malignancies. Curr. Drug Targets?2006, 7, 1301–1311, doi:10.2174/138945006778559139. 17073592
[34]
Kawakami, M.; Kawakami, K.; Puri, R.K. Interleukin-4-Pseudomonas exotoxin chimeric fusion protein for malignant glioma therapy. J. Neurooncol.?2003, 65, 15–25, doi:10.1023/A:1026294416718. 14649882
[35]
Rainov, N.G.; Heidecke, V. Long term survival in a patient with recurrent malignant glioma treated with intratumoral infusion of an IL4-targeted toxin (NBI-3001). J. Neurooncol.?2004, 66, 197–201, doi:10.1023/B:NEON.0000013478.27604.01. 15015787
[36]
Kunwar, S.; Chang, S.; Westphal, M.; Vogelbaum, M.; Sampson, J.; Barnett, G.; Shaffrey, M.; Ram, Z.; Piepmeier, J.; Prados, M.; et al. Phase III randomized trial of CED of IL13-PE38QQR vs. Gliadel wafers for recurrent glioblastoma. Neuro Oncol?2010, 12, 871–881, doi:10.1093/neuonc/nop054. 20511192
[37]
Vogelbaum, M.A.; Sampson, J.H.; Kunwar, S.; Chang, S.M.; Shaffrey, M.; Asher, A.L.; Lang, F.F.; Croteau, D.; Parker, K.; Grahn, A.Y.; Sherman, J.W.; Husain, S.R.; Puri, R.K. Convection-enhanced delivery of cintredekin besudotox (interleukin-13-PE38QQR) followed by radiation therapy with and without temozolomide in newly diagnosed malignant gliomas: Phase 1 study of final safety results. Neurosurgery?2007, 61, 1031–1038, doi:10.1227/01.neu.0000303199.77370.9e. 18091279
[38]
Kunwar, S.; Prados, M.D.; Chang, S.M.; Berger, M.S.; Lang, F.F.; Piepmeier, J.M.; Sampson, J.H.; Ram, Z.; Gutin, P.H.; Gibbons, R.D.; et al. Direct intracerebral delivery of cintredekin besudotox (IL13-PE38QQR) in recurrent malignant glioma: A report by the Cintredekin Besudotox Intraparenchymal Study Group. J. Clin. Oncol.?2007, 25, 837–844. 17327604
[39]
Sampson, J.H.; Akabani, G.; Archer, G.E.; Bigner, D.D.; Berger, M.S.; Friedman, A.H.; Friedman, H.S.; Herndon, J.E., II; Kunwar, S.; et al. Progress report of a Phase I study of the intracerebral microinfusion of a recombinant chimeric protein composed of transforming growth factor (TGF)-alpha and a mutated form of the Pseudomonas exotoxin termed PE-38 (TP-38) for the treatment of malignant brain tumors. J. Neurooncol.?2003, 65, 27–35, doi:10.1023/A:1026290315809. 14649883
[40]
Weaver, M.; Laske, D.W. Transferrin receptor ligand-targeted toxin conjugate (Tf-CRM107) for therapy of malignant gliomas. J. Neurooncol.?2003, 65, 3–13, doi:10.1023/A:1026246500788. 14649881
Liu, H.; Prayson, R.A.; Estes, M.L.; Drazba, J.A.; Barnett, G.H.; Bingaman, W.; Liu, J.; Jacobs, B.S.; Barna, B.P. In vivo expression of the interleukin 4 receptor alpha by astrocytes in epilepsy cerebral cortex. Cytokine?2000, 12, 1656–1661. 11052816
[43]
Joshi, B.H.; Leland, P.; Asher, A.; Prayson, R.A.; Varricchio, F.; Puri, R.K. In situ expression of interleukin-4 (IL-4) receptors in human brain tumors and cytotoxicity of a recombinant IL-4 cytotoxin in primary glioblastoma cell cultures. Cancer Res.?2001, 61, 8058–8061. 11719427
[44]
Pernis, A.; Witthuhn, B.; Keegan, A.D.; Nelms, K.; Garfein, E.; Ihle, J.N.; Paul, W.E.; Pierce, J.H.; Rothman, P. Interleukin 4 signals through two related pathways. Proc. Natl. Acad. Sci. USA?1995, 92, 7971–7975, doi:10.1073/pnas.92.17.7971. 7544011
[45]
Kawakami, K.; Kawakami, M.; Puri, R.K. Overexpressed cell surface interleukin-4 receptor molecules can be successfully targeted for antitumor cytotoxin therapy. Crit. Rev. Immunol.?2001, 21, 299–310. 11642612
[46]
Puri, R.K.; Hoon, D.S.; Leland, P.; Snoy, P.; Rand, R.W.; Pastan, I.; Kreitman, R.J. Preclinical development of a recombinant toxin containing circularly permuted interleukin 4 and truncated Pseudomonas exotoxin for therapy of malignant astrocytoma. Cancer Res.?1996, 56, 5631–5637. 8971168
[47]
Puri, R.K. Development of a recombinant interleukin-4-Pseudomonas exotoxin for therapy of glioblastoma. Toxicol. Pathol.?1999, 27, 53–57, doi:10.1177/019262339902700111. 10367674
[48]
Weber, F.; Asher, A.; Bucholz, R.; Berger, M.; Prados, M.; Chang, S.; Bruce, J.; Hall, W.; Rainov, N.G.; Westphal, M.; et al. Safety, tolerability, and tumor response of IL4-Pseudomonas exotoxin (NBI-3001) in patients with recurrent malignant glioma. J. Neurooncol.?2003, 64, 125–137. 12952293
[49]
Minty, A.; Chalon, P.; Derocq, J.M.; Dumont, X.; Guillemot, J.C.; Kaghad, M.; Labit, C.; Leplatois, P.; Liauzun, P.; Miloux, B.; et al. Interleukin-13 is a new human lymphokine regulating inflammatory and immune responses. Nature?1993, 362, 248–250. 8096327
[50]
Zurawski, G.; de Vries, J.E. Interleukin 13, an interleukin 4-like cytokine that acts on monocytes and B cells, but not on T cells. Immunol. Today?1994, 15, 19–26, doi:10.1016/0167-5699(94)90021-3. 7907877
Jiang, H.; Harris, M.B.; Rothman, P. IL-4/IL-13 signaling beyond JAK/STAT. J. Allergy Clin. Immunol.?2000, 105, 1063–1070, doi:10.1067/mai.2000.107604. 10856136
[53]
Debinski, W.; Obiri, N.I.; Powers, S.K.; Pastan, I.; Puri, R.K. Human glioma cells overexpress receptors for interleukin 13 and are extremely sensitive to a novel chimeric protein composed of interleukin 13 and pseudomonas exotoxin. Clin. Cancer Res.?1995, 1, 1253–1258. 9815919
[54]
Debinski, W.; Obiri, N.I.; Pastan, I.; Puri, R.K. A novel chimeric protein composed of interleukin 13 and Pseudomonas exotoxin is highly cytotoxic to human carcinoma cells expressing receptors for interleukin 13 and interleukin 4. J. Biol. Chem.?1995, 270, 16775–16780, doi:10.1074/jbc.270.28.16775. 7622490
[55]
Debinski, W.; Gibo, D.M.; Slagle, B.; Powers, S.K.; Gillespie, G.Y. Receptor for interleukin 13 is abundantly and specifically over-expressed in patients with glioblastoma multiforme. Int. J. Oncol.?1999, 15, 481–486. 10427128
[56]
Bernard, J.; Treton, D.; Vermot-Desroches, C.; Boden, C.; Horellou, P.; Angevin, E.; Galanaud, P.; Wijdenes, J.; Richard, Y. Expression of interleukin 13 receptor in glioma and renal cell carcinoma: IL13Ralpha2 as a decoy receptor for IL13. Lab. Invest.?2001, 81, 1223–1231, doi:10.1038/labinvest.3780336. 11555670
[57]
Maini, A.; Hillman, G.; Haas, G.P.; Wang, C.Y.; Montecillo, E.; Hamzavi, F.; Pontes, J.E.; Leland, P.; Pastan, I.; Debinski, W.; Puri, R.K. Interleukin-13 receptors on human prostate carcinoma cell lines represent a novel target for a chimeric protein composed of IL-13 and a mutated form of Pseudomonas exotoxin. J. Urol.?1997, 158, 948–953, doi:10.1016/S0022-5347(01)64369-6. 9258124
[58]
Ripley, D.; Shoup, B.; Majewski, A.; Chegini, N. Differential expression of interleukins IL-13 and IL-15 in normal ovarian tissue and ovarian carcinomas. Gynecol. Oncol.?2004, 92, 761–768, doi:10.1016/j.ygyno.2003.12.011. 14984938
[59]
Joshi, B.H.; Kawakami, K.; Leland, P.; Puri, R.K. Heterogeneity in interleukin-13 receptor expression and subunit structure in squamous cell carcinoma of head and neck: Differential sensitivity to chimeric fusion proteins comprised of interleukin-13 and a mutated form of Pseudomonas exotoxin. Clin. Cancer Res.?2002, 8, 1948–1956. 12060640
[60]
Kunwar, S. Convection enhanced delivery of IL13-PE38QQR for treatment of recurrent malignant glioma: Presentation of interim findings from ongoing phase 1 studies. Acta Neurochir. Suppl.?2003, 88, 105–111. 14531568
[61]
Shimamura, T.; Husain, S.R.; Puri, R.K. The IL-4 and IL-13 pseudomonas exotoxins: New hope for brain tumor therapy. Neurosurg. Focus?2006, 20, E11, doi:10.3171/foc.2006.20.4.6. 16819809
[62]
Sampson, J.H.; Brady, M.L.; Petry, N.A.; Croteau, D.; Friedman, A.H.; Friedman, H.S.; Wong, T.; Bigner, D.D.; Pastan, I.; Puri, R.K.; Pedain, C. Intracerebral infusate distribution by convection-enhanced delivery in humans with malignant gliomas: Descriptive effects of target anatomy and catheter positioning. Neurosurgery?2007, 60, ONS89–ONS99. 17297371
[63]
Citri, A.; Yarden, Y. EGF-ERBB signalling: Towards the systems level. Nat. Rev. Mol. Cell Biol.?2006, 7, 505–516, doi:10.1038/nrm1962. 16829981
[64]
Tang, P.; Steck, P.A.; Yung, W.K. The autocrine loop of TGF-alpha/EGFR and brain tumors. J. Neurooncol.?1997, 35, 303–314, doi:10.1023/A:1005824802617. 9440027
[65]
Shinojima, N.; Tada, K.; Shiraishi, S.; Kamiryo, T.; Kochi, M.; Nakamura, H.; Makino, K.; Saya, H.; Hirano, H.; Kuratsu, J.; Oka, K.; Ishimaru, Y.; Ushio, Y. Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res.?2003, 63, 6962–6970. 14583498
[66]
Heimberger, A.B.; Hlatky, R.; Suki, D.; Yang, D.; Weinberg, J.; Gilbert, M.; Sawaya, R.; Aldape, K. Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients. Clin. Cancer Res.?2005, 11, 1462–1466, doi:10.1158/1078-0432.CCR-04-1737. 15746047
[67]
Macdonald, D.R.; Cascino, T.L.; Schold, S.C., Jr.; Cairncross, J.G. Response criteria for phase II studies of supratentorial malignant glioma. J. Clin. Oncol.?1990, 8, 1277–1280. 2358840
[68]
Piascik, P. FDA approves fusion protein for treatment of lymphoma. J. Am. Pharm. Assoc. (Wash.) ?1999, 39, 571–572. 10467825
[69]
Foss, F.M. DAB(389)IL-2 (ONTAK): A novel fusion toxin therapy for lymphoma. Clin. Lymphoma?2000, 1 discussion 117, 110–116, doi:10.3816/CLM.2000.n.009. 11707818
[70]
Trowbridge, I.S.; Shackelford, D.A. Structure and function of transferrin receptors and their relationship to cell growth. Biochem. Soc. Symp.?1986, 51, 117–129. 3545211
[71]
Newman, R.; Domingo, D.; Trotter, J.; Trowbridge, I. Selection and properties of a mouse L-cell transformant expressing human transferrin receptor. Nature?1983, 304, 643–645, doi:10.1038/304643a0. 6308476
[72]
Gatter, K.C.; Brown, G.; Trowbridge, I.S.; Woolston, R.E.; Mason, D.Y. Transferrin receptors in human tissues: Their distribution and possible clinical relevance. J. Clin. Pathol.?1983, 36, 539–545, doi:10.1136/jcp.36.5.539. 6302135
[73]
Sutherland, R.; Delia, D.; Schneider, C.; Newman, R.; Kemshead, J.; Greaves, M. Ubiquitous cell-surface glycoprotein on tumor cells is proliferation-associated receptor for transferrin. Proc. Natl. Acad. Sci. USA?1981, 78, 4515–4519, doi:10.1073/pnas.78.7.4515. 6270680
[74]
Hall, W.A.; Godal, A.; Juell, S.; Fodstad, O. In vitro efficacy of transferrin-toxin conjugates against glioblastoma multiforme. J. Neurosurg.?1992, 76, 838–844, doi:10.3171/jns.1992.76.5.0838. 1314294
[75]
Hall, W.A.; Myklebust, A.; Godal, A.; Nesland, J.M.; Fodstad, O. In vivo efficacy of intrathecal transferrin-Pseudomonas exotoxin A immunotoxin against LOX melanoma. Neurosurgery?1994, 34, 649–656. 8008162
[76]
Lesley, J.; Domingo, D.L.; Schulte, R.; Trowbridge, I.S. Effect of an anti-murine transferrin receptor-ricin A conjugate on bone marrow stem and progenitor cells treated in vitro. Exp. Cell Res.?1984, 150, 400–407, doi:10.1016/0014-4827(84)90583-4. 6319165
[77]
Johnson, V.G.; Wilson, D.; Greenfield, L.; Youle, R.J. The role of the diphtheria toxin receptor in cytosol translocation. J. Biol. Chem.?1988, 263, 1295–1300. 3257214
[78]
Martell, L.A.; Agrawal, A.; Ross, D.A.; Muraszko, K.M. Efficacy of transferrin receptor-targeted immunotoxins in brain tumor cell lines and pediatric brain tumors. Cancer Res.?1993, 53, 1348–1353. 8443815
[79]
Laske, D.W.; Ilercil, O.; Akbasak, A.; Youle, R.J.; Oldfield, E.H. Efficacy of direct intratumoral therapy with targeted protein toxins for solid human gliomas in nude mice. J. Neurosurg.?1994, 80, 520–526, doi:10.3171/jns.1994.80.3.0520. 8113865
[80]
Dano, K.; Andreasen, P.A.; Grondahl-Hansen, J.; Kristensen, P.; Nielsen, L.S.; Skriver, L. Plasminogen activators, tissue degradation, and cancer. Adv. Cancer Res.?1985, 44, 139–266, doi:10.1016/S0065-230X(08)60028-7. 2930999
[81]
Mohanam, S.; Sawaya, R.; McCutcheon, I.; Ali-Osman, F.; Boyd, D.; Rao, J.S. Modulation of in vitro invasion of human glioblastoma cells by urokinase-type plasminogen activator receptor antibody. Cancer Res.?1993, 53, 4143–4147. 8395977
[82]
Rao, J.S.; Steck, P.A.; Tofilon, P.; Boyd, D.; Ali-Osman, F.; Stetler-Stevenson, W.G.; Liotta, L.A.; Sawaya, R. Role of plasminogen activator and of 92-KDa type IV collagenase in glioblastoma invasion using an in vitro matrigel model. J. Neurooncol.?1994, 18, 129–138, doi:10.1007/BF01050419. 7964975
[83]
Yamamoto, M.; Ueno, Y.; Hayashi, S.; Fukushima, T. The role of proteolysis in tumor invasiveness in glioblastoma and metastatic brain tumors. Anticancer Res.?2002, 22, 4265–4268. 12553067
[84]
Yamamoto, M.; Sawaya, R.; Mohanam, S.; Bindal, A.K.; Bruner, J.M.; Oka, K.; Rao, V.H.; Tomonaga, M.; Nicolson, G.L.; Rao, J.S. Expression and localization of urokinase-type plasminogen activator in human astrocytomas in vivo. Cancer Res.?1994, 54, 3656–3661. 8033079
[85]
Mohanam, S.; Sawaya, R.E.; Yamamoto, M.; Bruner, J.M.; Nicholson, G.L.; Rao, J.S. Proteolysis and invasiveness of brain tumors: Role of urokinase-type plasminogen activator receptor. J. Neurooncol.?1994, 22, 153–160, doi:10.1007/BF01052890. 7745467
[86]
Vallera, D.A.; Li, C.; Jin, N.; Panoskaltsis-Mortari, A.; Hall, W.A. Targeting urokinase-type plasminogen activator receptor on human glioblastoma tumors with diphtheria toxin fusion protein DTAT. J. Natl. Cancer Inst.?2002, 94, 597–606, doi:10.1093/jnci/94.8.597. 11959893
[87]
Rustamzadeh, E.; Li, C.; Doumbia, S.; Hall, W.A.; Vallera, D.A. Targeting the over-expressed urokinase-type plasminogen activator receptor on glioblastoma multiforme. J. Neurooncol.?2003, 65, 63–75, doi:10.1023/A:1026238331739. 14649886
[88]
Rustamzadeh, E.; Hall, W.A.; Todhunter, D.A.; Vallera, V.D.; Low, W.C.; Liu, H.; Panoskaltsis-Mortari, A.; Vallera, D.A. Intracranial therapy of glioblastoma with the fusion protein DTAT in immunodeficient mice. Int. J. Cancer?2007, 120, 411–419, doi:10.1002/ijc.22278. 17075792
[89]
Todhunter, D.A.; Hall, W.A.; Rustamzadeh, E.; Shu, Y.; Doumbia, S.O.; Vallera, D.A. A bispecific immunotoxin (DTAT13) targeting human IL-13 receptor (IL-13R) and urokinase-type plasminogen activator receptor (uPAR) in a mouse xenograft model. Protein Eng. Des. Sel.?2004, 17, 157–164, doi:10.1093/protein/gzh023. 15047912
[90]
Rustamzadeh, E.; Hall, W.A.; Todhunter, D.A.; Low, W.C.; Liu, H.; Panoskaltsis-Mortari, A.; Vallera, D.A. Intracranial therapy of glioblastoma with the fusion protein DTIL13 in immunodeficient mice. Int. J. Cancer?2006, 118, 2594–2601, doi:10.1002/ijc.21647. 16358262
[91]
Rustamzadeh, E.; Vallera, D.A.; Todhunter, D.A.; Low, W.C.; Panoskaltsis-Mortari, A.; Hall, W.A. Immunotoxin pharmacokinetics: A comparison of the anti-glioblastoma bi-specific fusion protein (DTAT13) to DTAT and DTIL13. J. Neurooncol.?2006, 77, 257–266, doi:10.1007/s11060-005-9051-7. 16314943
Dalken, B.; Giesubel, U.; Knauer, S.K.; Wels, W.S. Targeted induction of apoptosis by chimeric granzyme B fusion proteins carrying antibody and growth factor domains for cell recognition. Cell Death Differ.?2006, 13, 576–585, doi:10.1038/sj.cdd.4401773. 16179940
[95]
Abi-Habib, R.J.; Liu, S.; Bugge, T.H.; Leppla, S.H.; Frankel, A.E. A urokinase-activated recombinant diphtheria toxin targeting the granulocyte-macrophage colony-stimulating factor receptor is selectively cytotoxic to human acute myeloid leukemia blasts. Blood?2004, 104, 2143–2148, doi:10.1182/blood-2004-01-0339. 15161668
[96]
Bolognesi, A.; Tazzari, P.L.; Tassi, C.; Gromo, G.; Gobbi, M.; Stirpe, F. A comparison of anti-lymphocyte immunotoxins containing different ribosome-inactivating proteins and antibodies. Clin. Exp. Immunol.?1992, 89, 341–346. 1516253
Baluna, R.; Vitetta, E.S. Vascular leak syndrome: A side effect of immunotherapy. Immunopharmacology?1997, 37, 117–132, doi:10.1016/S0162-3109(97)00041-6. 9403331
[99]
Vitetta, E.S. Immunotoxins and vascular leak syndrome. Cancer J.?2000, 6 (Suppl. 3), S218–S224. 10874491
[100]
Kroll, R.A.; Neuwelt, E.A. Outwitting the blood-brain barrier for therapeutic purposes: Osmotic opening and other means. Neurosurgery?1998, 42 discussion 1099-1100, 1083–1099, doi:10.1097/00006123-199805000-00082. 9588554
[101]
Jain, R.K.; Baxter, L.T. Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: Significance of elevated interstitial pressure. Cancer Res.?1988, 48, 7022–7032. 3191477
[102]
Weinstein, J.N.; Eger, R.R.; Covell, D.G.; Black, C.D.; Mulshine, J.; Carrasquillo, J.A.; Larson, S.M.; Keenan, A.M. The pharmacology of monoclonal antibodies. Ann. N. Y. Acad. Sci.?1987, 507, 199–210, doi:10.1111/j.1749-6632.1987.tb45802.x. 3327413
[103]
Holzman, D.C. Whatever happened to immunotoxins? Research, and hope, are still alive. J. Natl. Cancer Inst.?2009, 101, 624–625, doi:10.1093/jnci/djp110. 19401548
[104]
Onda, M.; Nagata, S.; FitzGerald, D.J.; Beers, R.; Fisher, R.J.; Vincent, J.J.; Lee, B.; Nakamura, M.; Hwang, J.; Kreitman, R.J.; Hassan, R.; Pastan, I. Characterization of the B cell epitopes associated with a truncated form of Pseudomonas exotoxin (PE38) used to make immunotoxins for the treatment of cancer patients. J. Immunol.?2006, 177, 8822–8834. 17142785
[105]
Hansen, J.K.; Weldon, J.E.; Xiang, L.; Beers, R.; Onda, M.; Pastan, I. A recombinant immunotoxin targeting CD22 with low immunogenicity, low nonspecific toxicity, and high antitumor activity in mice. J. Immunother.?2010, 33, 297–304, doi:10.1097/CJI.0b013e3181cd1164. 20445350
[106]
Vallera, D.A.; Chen, H.; Sicheneder, A.R.; Panoskaltsis-Mortari, A.; Taras, E.P. Genetic alteration of a bispecific ligand-directed toxin targeting human CD19 and CD22 receptors resulting in improved efficacy against systemic B cell malignancy. Leuk. Res.?2009, 33, 1233–1242, doi:10.1016/j.leukres.2009.02.006. 19327829
[107]
Capone, P.M.; Papsidero, L.D.; Chu, T.M. Relationship between antigen density and immunotherapeutic response elicited by monoclonal antibodies against solid tumors. J. Natl. Cancer Inst.?1984, 72, 673–677. 6583450
[108]
Wen, D.Y.; Hall, W.A.; Conrad, J.; Godal, A.; Florenes, V.A.; Fodstad, O. In vitro and in vivo variation in transferrin receptor expression on a human medulloblastoma cell line. Neurosurgery?1995, 36, 1158–1164, doi:10.1227/00006123-199506000-00015. 7643997
[109]
Gan, H.K.; Kaye, A.H.; Luwor, R.B. The EGFRvIII variant in glioblastoma multiforme. J. Clin. Neurosci.?2009, 16, 748–754, doi:10.1016/j.jocn.2008.12.005. 19324552
[110]
Pai-Scherf, L.H.; Villa, J.; Pearson, D.; Watson, T.; Liu, E.; Willingham, M.C.; Pastan, I. Hepatotoxicity in cancer patients receiving erb-38, a recombinant immunotoxin that targets the erbB2 receptor. Clin. Cancer Res.?1999, 5, 2311–2315. 10499598
[111]
Gould, B.J.; Borowitz, M.J.; Groves, E.S.; Carter, P.W.; Anthony, D.; Weiner, L.M.; Frankel, A.E. Phase I study of an anti-breast cancer immunotoxin by continuous infusion: Report of a targeted toxic effect not predicted by animal studies. J. Natl. Cancer Inst.?1989, 81, 775–781, doi:10.1093/jnci/81.10.775. 2785605