While intensive efforts have been made for the treatment of cancer, this disease is still the second leading cause of death in many countries. Metastatic breast cancer, late-stage colon cancer, malignant melanoma, multiple myeloma, and other forms of cancer are still essentially incurable in most cases. Recent advances in genomic technologies have permitted the simultaneous evaluation of DNA sequence-based alterations together with copy number gains and losses. The requirement for a multi-targeting approach is the common theme that emerges from these studies. Therefore, the combination of new targeted biological and cytotoxic agents is currently under investigation in multimodal treatment regimens. Similarly, a combinational principle is applied in traditional Chinese medicine, as formulas consist of several types of medicinal herbs or minerals, in which one represents the principal component, and the others serve as adjuvant ones that assist the effects, or facilitate the delivery, of the principal component. In Western medicine, approximately 60 different arsenic preparations have been developed and used in pharmacological history. In traditional Chinese medicines, different forms of mineral arsenicals (orpiment—As2S3, realgar—As4S4, and arsenolite—arsenic trioxide, As2O3) are used, and realgar alone is included in 22 oral remedies that are recognized by the Chinese Pharmacopeia Committee (2005). It is known that a significant portion of some forms of mineral arsenicals is poorly absorbed into the body, and would be unavailable to cause systemic damage. This review primary focuses on the application of arsenic sulfide (realgar) for treatment of various forms of cancer in vitro and in vivo.
References
[1]
Kummar, C.S.S.R. Nanomaterials for Cancer Therapy; WILEY-VCH Verlag: Weinheim, Germany, 2006.
[2]
Ferrari, M. Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer?2005, 5, 161–171, doi:10.1038/nrc1566. 15738981
[3]
Kim, C.K.; Lim, S.J. Recent progress in drug delivery systems for anticancer agents. Arch. Pharm. Res.?2002, 25, 229–239, doi:10.1007/BF02976620. 12135091
[4]
Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev.?2002, 54, 631–651, doi:10.1016/S0169-409X(02)00044-3. 12204596
[5]
Antman, K.H. Introduction: the history of arsenic trioxide in cancer therapy. Oncologist?2001, 6 (Suppl. 2), 1–2, doi:10.1634/theoncologist.6-suppl_2-1.
[6]
Dilda, P.J.; Hogg, P.J. Arsenical-based cancer drugs. Cancer Treat. Rev.?2007, 33, 542–564, doi:10.1016/j.ctrv.2007.05.001. 17624680
[7]
Miller, W.H., Jr.; Schipper, H.M.; Lee, J.S.; Singer, J.; Waxman, S. Mechanisms of action of arsenic trioxide. Cancer Res.?2002, 62, 3893–3903. 12124315
[8]
Waxman, S.; Anderson, K.C. History of the development of arsenic derivatives in cancer therapy. Oncologist?2001, 6 (Suppl. 2), 3–10. 11585968
[9]
Wang, Z.Y. Arsenic compounds as anticancer agents. Cancer Chemother. Pharmacol.?2001, 48 (Suppl. 1), S72–S76, doi:10.1007/s002800100309. 11587371
[10]
Niu, C.; Yan, H.; Yu, T.; Sun, H.P.; Liu, J.X.; Li, X.S.; Wu, W.; Zhang, F.Q.; Chen, Y.; Zhou, L.; et al. Studies on treatment of acute promyelocytic leukemia with arsenic trioxide: remission induction, follow-up, and molecular monitoring in 11 newly diagnosed and 47 relapsed acute promyelocytic leukemia patients. Blood?1999, 94, 3315–3324. 10552940
[11]
Soignet, S.L.; Maslak, P.; Wang, Z.G.; Jhanwar, S.; Calleja, E.; Dardashti, L.J.; Corso, D.; DeBlasio, A.; Gabrilove, J.; Scheinberg, D.A.; et al. Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N. Engl. J. Med.?1998, 339, 1341–1348. 9801394
[12]
Sumi, D.; Shinkai, Y.; Kumagai, Y. Signal transduction pathways and transcription factors triggered by arsenic trioxide in leukemia cells. Toxicol. Appl. Pharmacol.?2010, 244, 385–392, doi:10.1016/j.taap.2010.02.012. 20193703
[13]
Nasr, R.; Lallemand-Breitenbach, V.; Zhu, J.; Guillemin, M.C.; de Thé, H. Therapy-induced PML/RARA proteolysis and acute promyelocytic leukemia cure. Clin. Cancer Res.?2009, 15, 6321–6326, doi:10.1158/1078-0432.CCR-09-0209. 19808868
[14]
Park, M.J.; Park, I.C.; Bae, I.J.; Seo, K.M.; Lee, S.H.; Hong, S.I.; Eun, C.K.; Zhang, W.; Rhee, C.H. Tetraarsenic oxide, a novel orally administrable angiogenesis inhibitor. Int. J. Oncol.?2003, 22, 1271–1276. 12738993
[15]
Choi, W.S.; Balaz, P.; Dutkova, E. Mechanochemical preparation of nano-sized pharmaceutical drugs for potential application in cancer therapy: Evaluation of realgar and orpigment as a promising cancer therapeutic agents. In Proceedings of the 3rd Asian Particle Technology Symposium, Beijing, China; 2007.
[16]
Wu, J.Z.; Ho, P.C. Evaluation of the in vitro activity and in vivo bioavailability of realgar nanoparticles prepared by cryo-grinding. Eur. J. Pharm. Sci.?2006, 29, 35–44, doi:10.1016/j.ejps.2006.05.002. 16824739
[17]
Balaz, P.; Fabian, M.; Pastorek, M.; Cholujova, D.; Sedlak, J. Mechanochemical preparation and anticancer effect of realgar As4S4 nanoparticles. Mater. Lett.?2009, 63, 1542–1544, doi:10.1016/j.matlet.2009.04.008.
[18]
Wang, L.; Zhou, G.B.; Liu, P.; Song, J.H.; Liang, Y.; Yan, X.J.; Xu, F.; Wang, B.S.; Mao, J.H.; Shen, Z.X.; et al. Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia. Proc. Natl. Acad. Sci. USA?2008, 105, 4826–4831, doi:10.1073/pnas.0712365105. 18344322
[19]
Koch, I.; Sylvester, S.; Lai, V.W.; Owen, A.; Reimer, K.J.; Cullen, W.R. Bioaccessibility and excretion of arsenic in Niu Huang Jie Du Pian pills. Toxicol. Appl. Pharmacol.?2007, 222, 357–364, doi:10.1016/j.taap.2006.12.005. 17239412
[20]
Wu, J.Z.; Ho, P.C. Comparing the relative oxidative DNA damage caused by various arsenic species by quantifying urinary levels of 8-hydroxy-2'-deoxyguanosine with isotope-dilution liquid chromatography/mass spectrometry. Pharm. Res.?2009, 26, 1525–1533, doi:10.1007/s11095-009-9865-7. 19266267
[21]
Caple, F.; Williams, E.A.; Spiers, A.; Tyson, J.; Burtle, B.; Daly, A.K.; Mathers, J.C.; Hesketh, J.E. Inter-individual variation in DNA damage and base excision repair in young, healthy non-smokers: effects of dietary supplementation and genotype. Br. J. Nutr.?2010, 1–9.
[22]
Wei, L.; Liao, P.; Wu, H.; Li, X.; Pei, F.; Li, W.; Wu, Y. Metabolic profiling studies on the toxicological effects of realgar in rats by (1)H NMR spectroscopy. Toxicol. Appl. Pharmacol.?2009, 234, 314–325, doi:10.1016/j.taap.2008.11.010. 19073202
[23]
Luo, L.Y.; Zhang, T.L.; Wang, K. Differentiation of HL-60 cells induced by realgar nano-particles. Zhongguo Zhong Yao Za Zhi?2006, 31, 1343–1346. 17061557
[24]
Mullen, D.J.E.; Nowacki, W. Refinement of the crystal structure of realgar, AsS and orpigment, As2S3. Zeitschrift für Kristallographie?1972, 136, 48–62, doi:10.1524/zkri.1972.136.1-2.48.
[25]
Balaz, P.; Choi, W.S.; Dutkova, E. Mechanochemical modification of properties and reactivity of nanosized arsenic sulfide As4S4. J. Phys. Chem. Solids?2007, 68, 1178–1183, doi:10.1016/j.jpcs.2007.01.008.
[26]
Balaz, P. Mechanochemistry in Nanoscience and Minerals Engineering; Springer: Berlin, Germany, 2008.
[27]
Bonazzi, P.; Menchetti, S.; Pratesi, G.; Muniz-Miranda, M.; Sbrana, G. Light-induced variations of realgar and betaAs4S4: X-ray diffraction and Raman studies. Am. Mineral.?1996, 81, 874–880.
[28]
Bonazzi, P.; Bindi, L.; Pratesi, G.; Menchetti, S. Light-induced changes in molecular arsenic sulfides: State of the art and new evidence by single-crystal X-ray diffraction. Am. Mineral.?2006, 91, 1323–1330, doi:10.2138/am.2006.2165.
[29]
Bonazzi, P.; Bindi, L. A crystallographic review of arsenic sulfides: effects of chemical variations and changes induced by exposure to light. Zeitschrift für Kristallographie?2008, 223, 132–147, doi:10.1524/zkri.2008.0011.
[30]
Bullen, H.A.; Dorko, M.J.; Oman, J.K.; Garrett, S.J. Valence and core-level binding energy shifts in realgar (As4S4) and pararealgar (As4S4) arsenic sulfides. Surf. Sci.?2003, 531, 319–328, doi:10.1016/S0039-6028(03)00491-6.
[31]
Naumov, P.; Makreski, P.; Jovanovski, G. Direct atomic scale observation of linkage isomerization of As4S4 clusters during the photoinduced transition of realgar to pararealgar. Inorg. Chem.?2007, 46, 10624–10631, doi:10.1021/ic701299w. 17994729
[32]
Macur, R.E.; Jackson, C.R.; Botero, L.M.; McDermott, T.R.; Inskeep, W.P. Bacterial populations associated with the oxidation and reduction of arsenic in an unsaturated soil. Environ. Sci. Technol.?2004, 38, 104–111, doi:10.1021/es034455a. 14740724
[33]
Ledbetter, R.N.; Connon, S.A.; Neal, A.L.; Dohnalkova, A.; Magnuson, T.S. Biogenic mineral production by a novel arsenic-metabolizing thermophilic bacterium from the Alvord Basin, Oregon. Appl. Environ. Microbiol.?2007, 73, 5928–5936, doi:10.1128/AEM.00371-07. 17630300
[34]
Lee, J.H.; Kim, M.G.; Yoo, B.; Myung, N.V.; Maeng, J.; Lee, T.; Dohnalkova, A.C.; Fredrickson, J.K.; Sadowsky, M.J.; Hur, H.G. Biogenic formation of photoactive arsenic-sulfide nanotubes by Shewanella sp. strain HN-41. Proc. Natl. Acad. Sci. USA?2007, 104, 20410–20415, doi:10.1073/pnas.0707595104. 18077394
[35]
Lu, D.P.; Qiu, J.Y.; Jiang, B.; Wang, Q.; Liu, K.Y.; Liu, Y.R.; Chen, S.S. Tetra-arsenic tetra-sulfide for the treatment of acute promyelocytic leukemia: a pilot report. Blood?2002, 99, 3136–3143, doi:10.1182/blood.V99.9.3136. 11964275
[36]
Lu, D.P.; Wang, Q. Current study of APL treatment in China. Int. J. Hematol.?2002, 76 (Suppl. 1), 316–318, doi:10.1007/BF03165273. 12430872
[37]
Lu, D.P. Arsenic sulfide compounds and derivates thereof for the treatment of malignancies. US Patent 6,733,792, 11 May 2004.
[38]
Zhang, C.; Huang, S.L.; Xiang, Y.; Guo, A.X. Study on Realgar inducing apoptosis in T lymphocytic cell line CEM. Zhong Xi Yi Jie He Xue Bao?2003, 1, 42–43, doi:10.3736/jcim20030117. 15339614
[39]
Zhang, J.; Wang, J.C.; Han, Y.H.; Wang, L.F.; Ji, S.P.; Liu, S.X.; Liu, X.P.; Yao, L.B. High expression of bcl-x(L) in K562 cells and its role in the low sensitivity of K562 to realgar-induced apoptosis. Acta Haematol.?2005, 113, 247–254, doi:10.1159/000084678. 15983431
[40]
Wang, H.; Liu, S.; Lu, X.; Zhao, X.; Chen, S.; Li, X. Gene expression profile changes in NB4 cells induced by realgar. Chin. Med. J. (Engl.)?2003, 116, 1074–1077. 12890387
[41]
Zimber, A.; Nguyen, Q.D.; Gespach, C. Nuclear bodies and compartments: functional roles and cellular signalling in health and disease. Cell. Signal.?2004, 16, 1085–1104, doi:10.1016/j.cellsig.2004.03.020. 15240004
Basak, S.; Jacobs, S.B.; Krieg, A.J.; Pathak, N.; Zeng, Q.; Kaldis, P.; Giaccia, A.J.; Attardi, L.D. The metastasis-associated gene Prl-3 is a p53 target involved in cell-cycle regulation. Mol. Cell?2008, 30, 303–314, doi:10.1016/j.molcel.2008.04.002. 18471976
[44]
Yin, T.; Wu, Y.L.; Sun, H.P.; Sun, G.L.; Du, Y.Z.; Wang, K.K.; Zhang, J.; Chen, G.Q.; Chen, S.J.; Chen, Z. Combined effects of As4S4 and imatinib on chronic myeloid leukemia cells and BCR-ABL oncoprotein. Blood?2004, 104, 4219–4225, doi:10.1182/blood-2004-04-1433. 15339852
[45]
Wang, M.C.; Liu, S.X.; Liu, P.B. Gene expression profile of multiple myeloma cell line treated by realgar. J. Exp. Clin. Cancer Res.?2006, 25, 243–249. 16918137
[46]
Wang, M.; Liu, S.; Liu, P. Gene expression profile of multiple myeloma cell line treated by arsenic trioxide. J. Huazhong Univ. Sci. Technolog. Med. Sci.?2007, 27, 646–649, doi:10.1007/s11596-007-0606-z. 18231732
[47]
Tse, W.P.; Che, C.T.; Liu, K.; Lin, Z.X. Evaluation of the anti-proliferative properties of selected psoriasis-treating Chinese medicines on cultured HaCaT cells. J. Ethnopharmacol.?2006, 108, 133–141, doi:10.1016/j.jep.2006.04.023. 16730935
[48]
Wang, L.W.; Shi, Y.L.; Wang, N.; Gou, B.D.; Zhang, T.L.; Wang, K. Association of oxidative stress with realgar-induced differentiation in human leukemia HL-60 cells. Chemotherapy?2009, 55, 460–467, doi:10.1159/000265528. 19996592
[49]
Wang, N.; Wang, L.W.; Gou, B.D.; Zhang, T.L.; Wang, K. Realgar-induced differentiation is associated with MAPK pathways in HL-60 cells. Cell Biol. Int.?2008, 32, 1497–1505, doi:10.1016/j.cellbi.2008.08.017. 18778786
[50]
Xi, R.G.; Huang, J.; Li, D.; Wang, X.B.; Wu, L.J. Roles of PI3-K/Akt pathways in nanoparticle realgar powders-induced apoptosis in U937 cells. Acta Pharmacol. Sin.?2008, 29, 355–363, doi:10.1111/j.1745-7254.2008.00759.x. 18298901
[51]
Cohen, H.Y.; Miller, C.; Bitterman, K.J.; Wall, N.R.; Hekking, B.; Kessler, B.; Howitz, K.T.; Gorospe, M.; de Cabo, R.; Sinclair, D.A. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science?2004, 305, 390–392, doi:10.1126/science.1099196. 15205477
[52]
Lunghi, P.; Costanzo, A.; Levrero, M.; Bonati, A. Treatment with arsenic trioxide (ATO) and MEK1 inhibitor activates the p73-p53AIP1 apoptotic pathway in leukemia cells. Blood?2004, 104, 519–525, doi:10.1182/blood-2003-08-2743. 15031205
[53]
Verlinden, L.; Verstuyf, A.; Mathieu, C.; Tan, B.K.; Bouillon, R. Differentiation induction of HL60 cells by 1,25(OH)2D3, all trans retinoic acid, rTGF-beta2 and their combinations. J. Steroid Biochem. Mol. Biol.?1997, 60, 87–97, doi:10.1016/S0960-0760(96)00174-4. 9182862
[54]
Ujihara, M.; Nomura, K.; Yamada, O.; Demura, H. Establishment of a stable HL60 subline having the potential for monocytic differentiation using granulocyte-macrophage colony-stimulating factor: possible use for the study of monocytic differentiation and oxidative stress. Atherosclerosis?1998, 139, 301–306, doi:10.1016/S0021-9150(98)00083-5. 9712336
[55]
Drayson, M.T.; Michell, R.H.; Durham, J.; Brown, G. Cell proliferation and CD11b expression are controlled independently during HL60 cell differentiation initiated by 1,25 alpha-dihydroxyvitamin D(3) or all-trans-retinoic acid. Exp. Cell Res.?2001, 266, 126–134, doi:10.1006/excr.2001.5200. 11339831
[56]
Luo, L.Y.; Huang, J.; Gou, B.D.; Zhang, T.L.; Wang, K. Induction of human promyelocytic leukemia HL-60 cell differentiation into monocytes by arsenic sulfide: involvement of serine/threonine protein phosphatases. Leuk. Res.?2006, 30, 1399–1405, doi:10.1016/j.leukres.2006.03.016. 16650894
[57]
Yuksel, S.; Saydam, G.; Uslu, R.; Sanli, U.A.; Terzioglu, E.; Buyukececi, F.; Omay, S.B. Arsenic trioxide and methylprednisolone use different signal transduction pathways in leukemic differentiation. Leuk. Res.?2002, 26, 391–398, doi:10.1016/S0145-2126(01)00147-3. 11839383
[58]
Merisko-Liversidge, E.; Liversidge, G.G.; Cooper, E.R. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur. J. Pharm. Sci.?2003, 18, 113–120, doi:10.1016/S0928-0987(02)00251-8. 12594003
[59]
Lee, J. Drug nano- and microparticles processed into solid dosage forms: physical properties. J. Pharm. Sci.?2003, 92, 2057–2068, doi:10.1002/jps.10471. 14502544
[60]
Kesisoglou, F.; Panmai, S.; Wu, Y. Nanosizing-oral formulation development and biopharmaceutical evaluation. Adv. Drug Deliv. Rev.?2007, 59, 631–644, doi:10.1016/j.addr.2007.05.003. 17601629
[61]
Juillerat-Jeanneret, L. Critical Analysis of Cancer Therapy using Nanomaterials. In Nanomaterials for Cancer Therapy; Kumar, C.S.S.R., Ed.; WILEY-VCH Verlag: Weinheim, Germany, 2006; pp. 199–241.
[62]
Liversidge, G.G.; Conzentino, P. Drug particle size reduction for decreasing gastric irritancy and enhancing absorption of naproxen in rats. Int. J. Pharm.?1995, 125, 309–313, doi:10.1016/0378-5173(95)00148-C.
[63]
Liversidge, G.G.; Cundy, K.C. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int. J. Pharm.?1995, 125, 91–97, doi:10.1016/0378-5173(95)00122-Y.
[64]
Deng, Y.; Xu, H.; Huang, K.; Yang, X.; Xie, C.; Wu, J. Size effects of realgar particles on apoptosis in a human umbilical vein endothelial cell line: ECV-304. Pharmacol. Res.?2001, 44, 513–518, doi:10.1006/phrs.2001.0885. 11735359
[65]
Ye, H.Q.; Yang, X.L.; Gau, L.; Sun, X.H.; Xu, H.B. Realgar nanoparticles induced cytotoxicity in promyelocytic leukemia HL-60 cells. Conf. Proc. IEEE Eng. Med. Biol. Soc.?2005, 7, 7714–7717. 17282069
[66]
Ye, H.Q.; Gan, L.; Yang, X.L.; Xu, H.B. Membrane toxicity accounts for apoptosis induced by realgar nanoparticles in promyelocytic leukemia HL-60 cells. Biol. Trace Elem. Res.?2005, 103, 117–132, doi:10.1385/BTER:103:2:117. 15772436
[67]
Ye, H.Q.; Gan, L.; Yang, X.L.; Xu, H.B. Membrane-associated cytotoxicity induced by realgar in promyelocytic leukemia HL-60 cells. J. Ethnopharmacol.?2006, 103, 366–371, doi:10.1016/j.jep.2005.08.014. 16174554
[68]
Zhao, Q.H.; Zhang, Y.; Liu, Y.; Wang, H.L.; Shen, Y.Y.; Yang, W.J.; Wen, L.P. Anticancer effect of realgar nanoparticles on mouse melanoma skin cancer in vivo via transdermal drug delivery. Med. Oncol.?2009, 27, 203–212. 19280372
Li, J.E.; Wu, W.L.; Wang, Z.Y.; Sun, G.L. Apoptotic effect of As2S2 on K562 cells and its mechanism. Acta Pharmacol. Sin.?2002, 23, 991–996. 12421474
[71]
Zhao, X.Y.; Li, G.Y.; Liu, Y.; Chai, L.M.; Chen, J.X.; Zhang, Y.; Du, Z.M.; Lu, Y.J.; Yang, B.F. Resveratrol protects against arsenic trioxide-induced cardiotoxicity in vitro and in vivo. Br. J. Pharmacol.?2008, 154, 105–113, doi:10.1038/bjp.2008.81. 18332854
[72]
Roy, M.; Sinha, D.; Mukherjee, S.; Paul, S.; Bhattacharya, R.K. Protective effect of dietary phytochemicals against arsenite induced genotoxicity in mammalian V79 cells. Indian J. Exp. Biol.?2008, 46, 690–697. 19024166