全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Toxins  2010 

Procoagulant Adaptation of a Blood Coagulation Prothrombinase-like Enzyme Complex in Australian Elapid Venom

DOI: 10.3390/toxins2061554

Keywords: snake venom, blood coagulation, prothrombinase complex, factor X, factor V, prothrombin activation, serine protease, hemostatic toxin

Full-Text   Cite this paper   Add to My Lib

Abstract:

The macromolecular enzyme complex prothrombinase serves an indispensable role in blood coagulation as it catalyzes the conversion of prothrombin to thrombin, a key regulatory enzyme in the formation of a blood clot. Interestingly, a virtually identical enzyme complex is found in the venom of some Australian elapid snakes, which is composed of a cofactor factor Va-component and a serine protease factor Xa-like subunit. This review will provide an overview of the identification and characterization of the venom prothrombinase complex and will discuss the rationale for its powerful procoagulant nature responsible for the potent hemostatic toxicity of the elapid venom.

References

[1]  Broad, A.J.; Sutherland, S.K.; Coulter, A.R. The lethality in mice of dangerous Australian and other snake venom. Toxicon?1979, 17, 661–664, doi:10.1016/0041-0101(79)90245-9. 524395
[2]  Speijer, H.; Govers-Riemslag, J.W.; Zwaal, R.F.; Rosing, J. Prothrombin activation by an activator from the venom of Oxyuranus scutellatus (Taipan snake). J. Biol. Chem.?1986, 261, 13258–13267. 3531198
[3]  Masci, P.P.; Whitaker, A.N.; de Jersey, J. Purification and characterization of a prothrombin activator from the venom of the Australian brown snake, Pseudonaja textilis textilis. Biochem. Int.?1988, 17, 825–835. 3075905
[4]  Rao, V.S.; Kini, R.M. Pseutarin C, a prothrombin activator from Pseudonaja textilis venom: its structural and functional similarity to mammalian coagulation factor Xa-Va complex. Thromb. Haemost.?2002, 88, 611–619. 12362232
[5]  Lavin, M.F.; Masci, P.P. Prothrombinase complexes with different physiological roles. Thromb. Haemost.?2009, 102, 421–423. 19718459
[6]  Mann, K.G.; Nesheim, M.E.; Church, W.R.; Haley, P.E.; Krishnaswamy, S. Surface dependent reactions of the vitamin K-dependent enzyme complexes. Blood?1990, 76, 1–16. 2194585
[7]  Chester, A.; Crawford, G.P. In vitro coagulant properties of venoms from Australian snakes. Toxicon?1982, 20, 501–504, doi:10.1016/0041-0101(82)90014-9. 7080056
[8]  Rosing, J.; Tans, G. Structural and functional properties of snake venom prothrombin activators. Toxicon?1992, 30, 1515–1527, doi:10.1016/0041-0101(92)90023-X. 1488760
[9]  Kini, R.M. The intriguing world of prothrombin activators from snake venom. Toxicon?2005, 45, 1133–1145, doi:10.1016/j.toxicon.2005.02.019. 15922779
[10]  Denson, K.W. Coagulant and anticoagulant action of snake venoms. Toxicon?1969, 7, 5–11, doi:10.1016/0041-0101(69)90154-8. 5804767
[11]  Owen, W.G.; Jackson, C.M. Activation of prothrombin with Oxyuranus scutellatus scutellatus (taipan snake) venom. Thromb. Res.?1973, 3, 705–714, doi:10.1016/0049-3848(73)90017-0.
[12]  Walker, F.J.; Owen, W.G.; Esmon, C.T. Characterization of the prothrombin activator from the venom of Oxyuranus scutellatus scutellatus (taipan venom). Biochemistry?1980, 19, 1020–1023, doi:10.1021/bi00546a029. 6986908
[13]  Chen, L.; Rezaie, A.R. Proexosite-1-dependent recognition and activation of prothrombin by taipan venom. J. Biol. Chem.?2004, 279, 17869–17874, doi:10.1074/jbc.M314285200. 14769787
[14]  Rao, V.S.; Swarup, S.; Kini, R.M. The nonenzymatic subunit of pseutarin C, a prothrombin activator from eastern brown snake (Pseudonaja textilis) venom, shows structural similarity to mammalian coagulation factor V. Blood?2003, 102, 1347–1354, doi:10.1182/blood-2002-12-3839. 12730119
[15]  Rao, V.S.; Swarup, S.; Kini, R.M. The catalytic subunit of pseutarin C, a group C prothrombin activator from the venom of Pseudonaja textilis, is structrually similar to mammalian blood coagulation factor Xa. Thromb. Haemost.?2004, 92, 509–521. 15351847
[16]  Welton, R.E.; Burnell, J.N. Full length nucleotide sequence of a factor V-like subunit of oscutarin from Oxyuranus scutellatus scutellatus (coastal Taipan). Toxicon?2005, 46, 328–336, doi:10.1016/j.toxicon.2005.05.001. 15993914
[17]  St. Pierre, L.; Masci, P.P.; Filippovich, I.; Sorokina, N.; Marsh, N.; Miller, D.J.; Lavin, M.F. Comparative analysis of prothrombin activators from the venom of Australian elapids. Mol. Biol. Evol.?2005, 22, 1853–1864, doi:10.1093/molbev/msi181. 15930152
[18]  Filippovich, I.; Sorokina, N.; St Pierre, L.; Flight, S.; de Jersey, J.; Perry, N.; Masci, P.P.; Lavin, M.F. Cloning and functional expression of venom prothrombin activator protease from Pseudonaja textilis with whole blood procoagulant activity. Br. J. Haematol.?2005, 131, 237–246, doi:10.1111/j.1365-2141.2005.05744.x. 16197456
[19]  Minh Le, T.N.; Reza, M.A.; Swarup, S.; Kini, R.M. Gene duplication of coagulation factor V and origin of venom prothrombin activator in Pseudonaja textilis snake. Thromb. Haemost.?2005, 93, 420–429. 15735790
[20]  Furie, B.; Bouchard, B.A.; Furie, B.C. Vitamin K-dependent biosynthesis of γ-carboxyglutamic acid. Blood?1999, 93, 1798–1808. 10068650
[21]  Sunnerhagen, M.; Forsén, S.; Hoffrén, A.-M.; Drakenberg, T.; Teleman, O.; Stenflo, J. Structure of the Ca2+-free Gla domain sheds light on membrane binding of blood coagulation proteins. Nat. Struct. Biol.?1995, 2, 504–509, doi:10.1038/nsb0695-504. 7664114
[22]  Bode, W.; Mayr, I.; Bauman, Y.; Huber, R.; Stone, S.R.; Hofsteenge, J. The refined 1.9 ? crystal structure of human α-thrombin: Interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Trp insertion segment. EMBO J.?1989, 8, 3467–3475. 2583108
[23]  Huber, R.; Bode, W. Structural basis of the activation and action of trypsin. Acc. Chem. Res.?1978, 11, 114–122, doi:10.1021/ar50123a006.
[24]  Reza, M.A.; Minh Le, T.N.; Swarup, S.; Manjunatha, K.R. Molecular evolution caught in action: gene duplication and evolution of molecular isoforms of prothrombin activators in Pseudonaja textilis (brown snake). J. Thromb. Haemost.?2006, 4, 1346–1353, doi:10.1111/j.1538-7836.2006.01969.x. 16706981
[25]  Rudolph, A.E.; Mullane, M.P.; Porche-Sorbet, R.; Daust, H.A.; Miletich, J.P. The role of the factor X activation peptide: a deletion mutagenesis approach. Thromb. Haemost.?2002, 88, 756–762. 12428090
[26]  Yang, L.; Manithody, C.; Rezaie, A.R. Functional role of O-linked and N-linked glycosylation sites present on the activation peptide of factor X. J. Thromb. Haemost.?2009, 7, 1696–1702, doi:10.1111/j.1538-7836.2009.03578.x. 19691479
[27]  Bos, M.H.A.; Boltz, M.; St. Pierre, L.; Masci, P.P.; de Jersey, J.; Lavin, M.F.; Camire, R.M. Venom factor V from the common brown snake escapes hemostatic regulation through procoagulant adaptations. Blood?2009, 114, 686–692, doi:10.1182/blood-2009-02-202663. 19365080
[28]  Toso, R.; Zhu, H.; Camire, R.M. The conformational switch from the factor X zymogen to protease state mediates exosite expression and prothrombinase assembly. J. Biol. Chem.?2008, 283, 18627–18635, doi:10.1074/jbc.M802205200. 18460471
[29]  Mann, K.G.; Kalafatis, M. Factor V: A combination of Dr. Jekyll and Mr. Hyde. Blood?2002, 101, 20–30. 12393635
[30]  Camire, R.M.; Bos, M.H.A. The molecular basis of factor V and VIII procofactor activation. J. Thromb. Haemost.?2009, 7, 1951–1961, doi:10.1111/j.1538-7836.2009.03622.x. 19765210
[31]  Toso, R.; Camire, R.M. Removal of B-domain sequences from factor V rather than specific proteolysis underlies the mechanism by which cofactor function is realized. J. Biol. Chem.?2004, 279, 21643–21650, doi:10.1074/jbc.M402107200. 15004010
[32]  Zhu, H.; Toso, R.; Camire, R.M. Inhibitory sequences within the B-domain stabilize circulating factor V in an inactive state. J. Biol. Chem.?2007, 282, 15033–15039, doi:10.1074/jbc.M701315200. 17387173
[33]  Adams, T.E.; Hockin, M.F.; Mann, K.G.; Everse, S.J. The crystal structure of activated protein C-inactivated bovine factor Va: Implications for cofactor function. Proc. Natl. Acad. Sci. USA?2004, 101, 8918–8923, doi:10.1073/pnas.0403072101. 15184653
[34]  Birrell, G.W.; Earl, S.; Masci, P.P.; de Jersey, J.; Wallis, T.P.; Gorman, J.J.; Lavin, M.F. Molecular diversity in venom from the Australian Brown snake, Pseudonaja textilis. Mol. Cell. Proteomics?2006, 5, 379–389. 16284125
[35]  Kalafatis, M. Identification and partial characterization of factor Va heavy-chain kinase from human platelets. J. Biol. Chem.?1998, 273, 8459–8466, doi:10.1074/jbc.273.14.8459. 9525959
[36]  Pittman, D.D.; Tomkinson, K.N.; Michnick, D.; Seligsohn, U.; Kaufman, R.J. Posttranslational sulfation of factor V is required for efficient thrombin cleavage and activation and for full procoagulant activity. Biochemistry?1994, 33, 6952–6959, doi:10.1021/bi00188a026. 8204629
[37]  Masci, P.P.; Rowe, E.A.; Whitaker, A.N.; de Jersey, J. Fibrinolysis as a feature of disseminated intravascular coagulation (DIC) after Pseudonaja textilis textilis envenomation. Thromb. Res.?1990, 59, 859–870, doi:10.1016/0049-3848(90)90399-W. 2237840
[38]  Lalloo, D.G.; Trevett, A.J.; Korinhona, A.; Nwokolo, N.; Laurenson, I.F.; Paul, M.; Black, J.; Naraqi, S.; Mavo, B.; Saweri, A.; et al. Snake bites by the Papuan taipan (Oxyuranus scutellatus canni): paralysis, hemostatic and electrocardiographic abnormalities, and effects of antivenom. Am. J. Trop. Med. Hyg.?1995, 52, 525–531. 7611559
[39]  Barrett, R.; Little, M. Five years of snake envenoming in far north Queensland. Emerg. Med. (Fremantle)?2003, 15, 500–510, doi:10.1046/j.1442-2026.2003.00509.x. 14992068
[40]  Currie, B.J. Snakebite in tropical Australia: a prospective study in the "Top End" of the Northern Territory. Med. J. Aust.?2004, 181, 693–697. 15588215
[41]  Reza, M.A.; Swarup, S.; Kini, R.M. Structure of two genes encoding parallel prothrombin activators in Tropidechis carinatus snake: gene duplication and recruitment of factor X gene to the venom gland. J. Thromb. Haemost.?2007, 5, 117–126, doi:10.1111/j.1538-7836.2006.02266.x. 17239167
[42]  Kwong, S.; Woods, A.E.; Mirtschin, P.J.; Ge, R.; Kini, R.M. The recruitment of blood coagulation factor X into snake venom gland as a toxin: the role of promoter cis-elements in its expression. Thromb. Haemost.?2009, 102, 469–478. 19718466
[43]  Mirtschin, P.J.; Dunstan, N.; Hough, B.; Hamilton, E.; Klein, S.; Lucas, J.; Millar, D.; Madaras, F.; Nias, T. Venom yields from Australian and some other species of snakes. Ecotoxicology?2006, 15, 531–538, doi:10.1007/s10646-006-0089-x. 16937075
[44]  Mann, K.G.; Brummel, K.; Butenas, S. What is all that throm bin for? J. Thromb. Haemost.?2003, 1, 1504–1514, doi:10.1046/j.1538-7836.2003.00298.x. 12871286
[45]  Krishnaswamy, S.; Jones, K.C.; Mann, K.G. Prothrombinase complex assembly: Kinetic mechanism of enzyme assembly on phospholipid vesicles. J. Biol. Chem.?1988, 263, 3823–3834. 3346225
[46]  Majumder, R.; Quinn-Allen, M.A.; Kane, W.H.; Lentz, B.R. A phosphatidylserine binding site in factor Va C1 domain regulates both assembly and activity of the prothrombinase complex. Blood?2008, 112, 2795–2802, doi:10.1182/blood-2008-02-138941. 18587009
[47]  Qureshi, S.H.; Yang, L.; Manithody, C.; Rezaie, A.R. Membrane-dependent interaction of factor Xa and prothrombin with factor Va in the prothrombinase complex. Biochemistry?2009, 48, 5034–5041, doi:10.1021/bi900240g. 19378973
[48]  Fohlman, J.; Lind, P.; Eaker, D. Taipoxin, an extremely potent presynaptic snake venom neurotoxin. Elucidation of the primary structure of the acidic carbohydrate-containing taipoxin-subunit, a prophospholipase homolog. FEBS Lett.?1977, 84, 367–371, doi:10.1016/0014-5793(77)80726-6. 563806
[49]  Pearson, J.A.; Tyler, M.I.; Retson, K.V.; Howden, M.E. Studies on the subunit structure of textilotoxin, a potent presynaptic neurotoxin from the venom of the Australian common brown snake (Pseudonaja textilis). 3. The complete amino-acid sequences of all the subunits. Biochim. Biophys. Acta?1993, 1161, 223–229, doi:10.1016/0167-4838(93)90217-F. 8431471
[50]  Joseph, J.S.; Chung, M.C.; Mirtschin, P.J.; Kini, R.M. Effect of snake venom procoagulants on snake plasma: implications for the coagulation cascade of snakes. Toxicon?2002, 40, 175–183, doi:10.1016/S0041-0101(01)00218-5. 11689239
[51]  Thwin, M.M.; Gopalakrishnakone, P. Snake envenomation and protective natural endogenous proteins: a mini review of the recent developments (1991–1997). Toxicon?1998, 36, 1471–1482, doi:10.1016/S0041-0101(98)00137-8. 9792161
[52]  Takacs, Z.; Wilhelmsen, K.C.; Sorota, S. Cobra (Naja spp.) nicotinic acetylcholine receptor exhibits resistance to Erabu sea snake (Laticauda semifasciata) short-chain alpha-neurotoxin. J. Mol. Evol.?2004, 58, 516–526, doi:10.1007/s00239-003-2573-8. 15170255

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133