We attempted synthesis of the hydrogen adsorption material suitable for the fuel cell vehicles (FCEVs). The designed and synthesized Cu 2(3,5-Pyridinedicarboxylate) 2 (=Cu 2PDC 2) metal complex showed an extremely high volumetric uptake density for a physisorption material, even though the specific surface area was only about 1,000 m 2 g ?1. Factors for high uptake properties are considered to be the increased adsorption sites per unit area, the increased adsorption energy, and the optimized design of pore shapes. High hydrogen uptake on volumetric basis is especially effective for FCEV because the tank volume is reduced. It is expected that property prediction using computational simulation and sophisticated analysis at the micro and nano levels will become an indispensable tool in the design of functional materials.
References
[1]
Kanoya, I.; Suzuki, T.; Hosoe, M. Development of High-Capacity MgMH Alloy for Hydrogen Storage. Honda R&D Tech. Rev. 2002, 14, 91–98.
[2]
Sakintuna, B.; Lamari-Darkrim, F.; Hirscher, M. Metal Hydride Materials for Solid Hydrogen Storage: A Review. Int. J. Hydrogen Energ. 2007, 32, 1121–1140, doi:10.1016/j.ijhydene.2006.11.022.
[3]
Schlapbach, L.; Züttel, A. Hydrogen-Storage Materials for Mobile Applications. Nature 2001, 414, 353–358, doi:10.1038/35104634. 11713542
Takei, T.; Kawashima, J.; Ii, T.; Maeda, A.; Hasegawa, M.; Kitagawa, T.; Ohmura, T.; Ichikawa, M.; Hosoe, M.; Kanoya, I.; Mori, W. Hydrogen Adsorption Properties of Lantern-Type Dinuclear M(BDC)(DABCO)1/2. Bull. Chem. Soc. Jpn. 2008, 81, 847–856, doi:10.1246/bcsj.81.847.
[6]
Morris, R.E.; Wheatley, P.S. Gas Storage in Nanoporous Materials. Angew. Chem. Int. Ed. 2008, 47, 4966–4981, doi:10.1002/anie.200703934.
[7]
Yuan, D.; Zhao, D.; Sun, D.; Zhou, H. An Isoreticular Series of Metal-Organic Frameworks with Dendritic Hexacarboxylate Ligands and Exceptionally High Gas-Uptake Capacity. Angew. Chem. Int. Ed. 2010, 49, 5357–5361, doi:10.1002/anie.201001009.
[8]
Rowsell, J.L.C.; Yaghi, O.M. Strategies for Hydrogen Storage in Metal-Organic Frameworks. Angew. Chem. Int. Ed. 2005, 44, 4670–4679, doi:10.1002/anie.200462786.
[9]
Panella, B.; Hirscher, M.; Pütter, H.; Müller, U. Hydrogen Adsorption in Metal-Organic Frameworks: Cu-MOFs and Zn-MOFs Compared. Adv. Funct. Mater. 2006, 16, 520–524, doi:10.1002/adfm.200500561.
Ma, S.; Zhou, H.C. Gas Storage in Porous Metal-Organic Frameworks for Clean Energy Applications. Chem. Commun. 2010, 46, 44–53, doi:10.1039/b916295j.
[12]
Han, S.S.; Goddard, W.A., III. Lithium-Doped Metal-Organic Frameworks for Reversible H2 Storage at Ambient Temperature. J. Am. Chem. Soc. 2007, 129, 8422–8423, doi:10.1021/ja072599+. 17569539
[13]
Furukawa, H.; Miller, M.A.; Yaghi, O.M. Independent Verification of the Saturation Hydrogen Uptake in MOF-177 and Establishment of a Benchmark for Hydrogen Adsorption in Metal-Organic Frameworks. J. Mater. Chem. 2007, 17, 3197–3204, doi:10.1039/b703608f.
[14]
O'Keeffe, M.; Yaghi, O.M. Deconstructing the Crystal Structures of Metal-Organic Frameworks and Related Materials into Their Underlying Nets. Chem. Rev. 2011, doi:10.1021/cr200205j.
[15]
Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O.M. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science 2002, 295, 469–472, doi:10.1126/science.1067208. 11799235
[16]
Kanoya, I.; Furuta, T.; Sakamoto, R.; Hosoe, M.; Ichikawa, M.; Itoh, K.; Fukunaga, T. Anomalous Aggregation State of Deuterium Molecules in the Nanoscale Pores of a Metal Organic Framework. J. Appl. Phys. 2010, 108, 074310, doi:10.1063/1.3490625.
[17]
The calculations have been performed using the ab-initio total-energy and molecular dynamics program VASP (Vienna ab-inito simulation program) developed at the Institut fur Material-physik of the Universitat Wien.
[18]
Kresse, G.; Furthmuller, J. Efficient Iterative Schemes for ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169–11186, doi:10.1103/PhysRevB.54.11169.
[19]
Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59, 1758–1775, doi:10.1103/PhysRevB.59.1758.
[20]
Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138, doi:10.1103/PhysRev.140.A1133.
[21]
Horvath, G.; Kawazoe, K. Method for the Calculation of Effective Pore Size Distribution in Molecular Sieve Carbon. J. Chem. Eng. Jpn. 1983, 16, 470–475, doi:10.1252/jcej.16.470.
Rowsell, J.L.C.; Millward, A.R.; Park, K.S.; Yaghi, O.M. Hydrogen Sorption in Functionalized Metal-Organic Frameworks. J. Am. Chem. Soc. 2004, 126, 5666–5667, doi:10.1021/ja049408c. 15125649
[24]
Rowsell, J.L.C.; Yaghi, O.M. Effects of Functionalization, Catenation, and Variation of the Metal Oxide and Organic Linking Units on the Low-Pressure Hydrogen Adsorption Properties of Metal-Organic Frameworks. J. Am. Chem. Soc. 2006, 128, 1304–1315, doi:10.1021/ja056639q. 16433549
[25]
Ferey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.; Margiolaki, I. A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science 2005, 309, 2040–2042, doi:10.1126/science.1116275. 16179475
[26]
Ma, S.; Sun, D.; Ambrogio, M.; Fillinger, J.A.; Parkin, S.; Zhou, H.-C. Framework-Catenation Isomerism in Metal-Organic Frameworks and Its Impact on Hydrogen Uptake. J. Am. Chem. Soc. 2007, 129, 1858–1859, doi:10.1021/ja067435s. 17256862