The trichothecene mycotoxin deoxynivalenol (DON) is commonly encountered in human cereal foods throughout the world as a result of infestation of grains in the field and in storage by the fungus Fusarium. Significant questions remain regarding the risks posed to humans from acute and chronic DON ingestion, and how to manage these risks without imperiling access to nutritionally important food commodities. Modulation of the innate immune system appears particularly critical to DON’s toxic effects. Specifically, DON induces activation of mitogen-activated protein kinases (MAPKs) in macrophages and monocytes, which mediate robust induction of proinflammatory gene expression—effects that can be recapitulated in intact animals. The initiating mechanisms for DON-induced ribotoxic stress response appear to involve the (1) activation of constitutive protein kinases on the damaged ribosome and (2) autophagy of the chaperone GRP78 with consequent activation of the ER stress response. Pathological sequelae resulting from chronic low dose exposure include anorexia, impaired weight gain, growth hormone dysregulation and aberrant IgA production whereas acute high dose exposure evokes gastroenteritis, emesis and a shock-like syndrome. Taken together, the capacity of DON to evoke ribotoxic stress in mononuclear phagocytes contributes significantly to its acute and chronic toxic effects in vivo. It is anticipated that these investigations will enable the identification of robust biomarkers of effect that will be applicable to epidemiological studies of the human health effects of this common mycotoxin.
References
[1]
Joffe, A.Z. Fusarium poae and F. sporotrichoides as principal causal agents of alimentary toxic aleukia. In Mycotoxic Fungi, Mycotoxins, Mycotoxicoses: An Encyclopedic Handbook; Wyllie, T.D., Morehouse, L.G., Eds.; Dekker: New York, NY, USA, 1978; pp. 21–86.
[2]
Yoshizawa, T. Trichothecenes: Chemical, Biological, and Toxicological Aspects. In Developmentsin Food Science; Ueno, Y., Ed.; Kodansha Ltd.: Tokyo, Japan, 1983; pp. 195–209.
[3]
Luo, X. Food Poisoning Caused by Fusarium Toxins; ILSI: Bangkok, Thailand, 1994; pp. 129–136.
[4]
Bhat, R.V.; Beedu, S.R.; Ramakrishna, Y.; Munshi, K.L. Outbreak of trichothecene mycotoxicosis associated with consumption of mould-damaged wheat production in Kashmir Valley, India. Lancet?1989, 1, 35–37. 2563012
Grove, J.F. Macrocyclic trichothecenes. Nat. Prod. Rep.?1993, 10, 429–448, doi:10.1039/np9931000429.
[7]
Grove, J.F. Non-macrocyclic trichothecenes. Part 2. Prog. Chem. Org. Nat. Prod.?2000, 69, 1–70.
[8]
Canady, R.A.; Coker, R.D.; Rgan, S.K.; Krska, R.; Kuiper-Goodman, T.; Olsen, M.; Pestka, J.J.; Resnik, S.; Schlatter, J. Deoxynivalenol. In Safety evaluation of certain mycotoxins in food. Fifty-sixth report of the Joint FAO/WHO Expert Committee on Food Additives; International Programme on Chemical Safety, World Health Organizatio: Geneva, Switzerland, 2001; pp. 420–555.
[9]
Forsyth, D.M.; Yoshizawa, T.; Morooka, N.; Tuite, J. Emetic and refusal activity of deoxynivalenol to swine. Appl. Environ. Microbiol.?1977, 34, 547–552. 931376
[10]
Friend, D.W.; Trenholm, H.L.; Elliot, J.I.; Thompson, B.K.; Hartin, K.E. Effect of feeding vomitoxin-contaminated wheat to pigs. Can. J. Anim. Sci.?1982, 62, 1211–1222, doi:10.4141/cjas82-141.
[11]
Pestka, J.J.; Lin, W.S.; Miller, E.R. Emetic activity of the trichothecene 15-acetyldeoxynivalenol in swine. Food Chem. Toxicol.?1987, 25, 855–858, doi:10.1016/0278-6915(87)90264-X. 3692388
[12]
Prelusky, D.B.; Trenholm, H.L. The efficacy of various classes of anti-emetics in preventing deoxynivalenol-induced vomiting in swine. Nat. Toxins?1993, 1, 296–302, doi:10.1002/nt.2620010508. 8167950
[13]
Rotter, B.A.; Prelusky, D.B.; Pestka, J.J. Toxicology of deoxynivalenol (vomitoxin). J. Toxicol. Environ. Health?1996, 48, 1–34. 8637056
[14]
Young, L.G.; McGirr, L.; Valli, V.E.; Lumsden, J.H.; Lun, A. Vomitoxin in corn fed to young pigs. J. Anim. Sci.?1983, 57, 655–664. 6630099
[15]
Pestka, J.J. Mechanisms of deoxynivalenol-induced gene expression and apoptosis. Food Addit. Contam.?2008, 25, 1128–1140, doi:10.1080/02652030802056626.
[16]
Turner, P.C.; Rothwell, J.A.; White, K.L.M.; Gong, Y.; Cade, J.E.; Wild, C.P. Urinary deoxynivalenol is correlated with cereal intake in individuals from the United Kingdom. Environ. Health Perspec.?2008, 116, 21–25.
[17]
Turner, P.C.; Taylor, E.F.; White, K.L.M.; Cade, J.E.; Wild, C.P. A comparison of 24 h urinary deoxynivalenol with recent v. average cereal consumption for UK adults. British J. Nutri.?2009, 102, 1276–1284, doi:10.1017/S0007114509990390.
[18]
Shi, Y.H.; Porter, K.; Parameswaran, N.; Bae, H.K.; Pestka, J.J. Role of GRP78/BiP Degradation and ER Stress in Deoxynivalenol-Induced Interleukin-6 Upregulation in the Macrophage (vol 109, pg 247, 2009). Toxicol. Sci.?2009, 110, 249–250, doi:10.1093/toxsci/kfp110.
[19]
Ueno, Y. Trichothecenes: Chemical, Biological, and Toxicological Aspects. In Trichothecenes; Ueno, Y., Ed.; Elsevier Press: Amsterdam, The Netherlands, 1983; pp. 135–146.
[20]
Shifrin, V.I.; Anderson, P. Trichothecene mycotoxins trigger a ribotoxic stress response that activates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase and induces apoptosis. J. Biol. Chem.?1999, 274, 13985–13992, doi:10.1074/jbc.274.20.13985. 10318810
[21]
Li, M.; Pestka, J.J. Comparative induction of 28S ribosomal RNA cleavage by ricin and the trichothecenes deoxynivalenol and T-2 toxin in the macrophage. Toxicol. Sci.?2008, 105, 67–78, doi:10.1093/toxsci/kfn111. 18535001
[22]
Zhou, H.R.; Lau, A.S.; Pestka, J.J. Role of double-stranded RNA-activated protein kinase R (PKR) in deoxynivalenol-induced ribotoxic stress response. Toxicol. Sci.?2003, 74, 335–344, doi:10.1093/toxsci/kfg148. 12773753
[23]
Williams, B.R. Signal integration via PKR. Sci. STKE?2001, 89, re2.
[24]
He, K.; Vines, L.; Pestka, J.J. Deoxynivalenol-induced modulation of microRNA expression in RAW 264.7 macrophages-A potential novel mechanism for translational inhibition. Toxicologist (Toxicol.Sci. Suppl.)?2010, 114, 310.
[25]
Chung, Y.J.; Zhou, H.R.; Pestka, J.J. Transcriptional and posttranscriptional roles for p38 mitogen-activated protein kinase in upregulation of TNF-alpha expression by deoxynivalenol (vomitoxin). Toxicol. Appl. Pharmacol.?2003, 193, 188–201, doi:10.1016/S0041-008X(03)00299-0. 14644621
[26]
Jia, Q.; Zhou, H.R.; Bennink, M.; Pestka, J.J. Docosahexaenoic acid attenuates mycotoxin-induced immunoglobulin a nephropathy, interleukin-6 transcription, and mitogen-activated protein kinase phosphorylation in mice. J. Nutr.?2004, 134, 3343–3349. 15570035
[27]
Gray, J.S.; Bae, H.K.; Li, J.C.B.; Lau, A.S.; Pestka, J.J. Double-stranded RNA-activated protein kinase (PKR) mediates induction of IL-8 expression by deoxynivalenol, Shiga toxin 1 and ricin in monocytes. Toxicol. Sci.?2008, 105, 322–330, doi:10.1093/toxsci/kfn128. 18599499
[28]
Gray, J.S.; Pestka, J.J. Transcriptional regulation of deoxynivalenol-induced IL-8 expression in human monocytes. Toxicol. Sci.?2007, 99, 502–511, doi:10.1093/toxsci/kfm182. 17636245
[29]
Li, S.; Ouyang, Y.; Yang, G.H.; Pestka, J.J. Modulation of transcription factor AP-1 activity in murine EL-4 thymoma cells by vomitoxin (deoxynivalenol). Toxicol. Appl. Pharmacol.?2000, 163, 17–25, doi:10.1006/taap.1999.8859. 10662601
Korcheva, V.; Wong, J.; Lindauer, M.; Jacoby, D.B.; Iordanov, M.S.; Magun, B. Role of apoptotic signaling pathways in regulation of inflammatory responses to ricin in primary murine macrophages. Mol. Immunol.?2007, 44, 2761–2771, doi:10.1016/j.molimm.2006.10.025. 17257680
[32]
Cherla, R.P.; Lee, S.Y.; Mees, P.L.; Tesh, V.L. Shiga toxin 1-induced cytokine production is mediated by MAP kinase pathways and translation initiation factor eIF4E in the macrophage-like THP-1 cell line. J. Leukoc. Biol.?2006, 79, 397–407. 16301326
[33]
Leyva-Illades, D.; Cherla, R.P.; Galindo, C.L.; Chopra, A.K.; Tesh, V.L. Global transcriptional response of macrophage-like THP-1 cells to Shiga toxin type 1. Infec. Immunity?2010, 78, 2454–2465, doi:10.1128/IAI.01341-09.
[34]
Moon, Y.; Pestka, J.J. Vomitoxin-induced cyclooxygenase-2 gene expression in macrophages mediated by activation of ERK and p38 but not JNK mitogen-activated protein kinases. Toxicol. Sci.?2002, 69, 373–382, doi:10.1093/toxsci/69.2.373. 12377986
[35]
Moon, Y.; Pestka, J.J. Deoxynivalenol-induced mitogen-activated protein kinase phosphorylation and IL-6 expression in mice suppressed by fish oil. J. Nutr. Biochem.?2003, 14, 717–726, doi:10.1016/j.jnutbio.2003.08.009. 14690764
[36]
Moon, Y.; Pestka, J.J. Cyclooxygenase-2 mediates interleukin-6 upregulation by vomitoxin (deoxynivalenol) in vitro and in vivo. Toxicol. Appl. Pharmacol.?2003, 187, 80–88, doi:10.1016/S0041-008X(02)00033-9. 12649040
[37]
Kinser, S.; Li, M.; Jia, Q.; Pestka, J.J. Truncated deoxynivalenol-induced splenic immediate early gene response in mice consuming (n-3) polyunsaturated fatty acids. J. Nutr. Biochem.?2005, 16, 88–95, doi:10.1016/j.jnutbio.2004.10.003. 15681167
[38]
Nielsen, C.; Lippke, H.; Didier, A.; Dietrich, R.; Martlbauer, E. Potential of deoxynivalenol to induce transcription factors in human hepatoma cells. Molec. Nutri. Food Res.?2009, 53, 479–491, doi:10.1002/mnfr.200800475.
[39]
Choi, H.J.; Yang, H.; Park, S.H.; Moon, Y. HuR/ELAVL1 RNA binding protein modulates interleukin-8 induction by muco-active ribotoxin deoxynivalenol. Toxicol. Appl. Pharmacol.?2009, 240, 46–54, doi:10.1016/j.taap.2009.06.023. 19591856
[40]
Ouyang, Y.L.; Li, S.; Pestka, J.J. Effects of vomitoxin (deoxynivalenol) on transcription factor NF-kappa B/Rel binding activity in murine EL-4 thymoma and primary CD4+ T cells. Toxicol. Appl. Pharmacol.?1996, 140, 328–336, doi:10.1006/taap.1996.0228. 8887449
[41]
Wong, S.S.; Zhou, H.R.; Pestka, J.J. Effects of vomitoxin (deoxynivalenol) on the binding of transcription factors AP-1, NF-kappaB, and NF-IL6 in raw 26.7 macrophage cells. J. Toxicol. Environ. Health A?2002, 65, 1161–1180, doi:10.1080/152873902760125381. 12167214
[42]
Zhou, H.R.; Jia, Q.; Pestka, J.J. Ribotoxic stress response to the trichothecene deoxynivalenol in the macrophage involves the SRC family kinase Hck. Toxicol. Sci.?2005, 85, 916–926, doi:10.1093/toxsci/kfi146. 15772366
[43]
Moon, Y.; Uzarski, R.; Pestka, J.J. Relationship of trichothecene structure to COX-2 induction in the macrophage: selective action of type B (8-keto) trichothecenes. J. Toxicol. Environ. Health A?2003, 66, 1967–1983, doi:10.1080/713853950. 14514436
[44]
Wong, S.S.; Schwartz, R.C.; Pestka, J.J. Superinduction of TNF-alpha and IL-6 in macrophages by vomitoxin (deoxynivalenol) modulated by mRNA stabilization. Toxicology?2001, 161, 139–149, doi:10.1016/S0300-483X(01)00331-6. 11295263
[45]
Jia, Q.; Zhou, H.R.; Shi, Y.; Pestka, J.J. Docosahexaenoic acid consumption inhibits deoxynivalenol-induced CREB/ATF1 activation and IL-6 gene transcription in mouse macrophages. J. Nutr.?2006, 136, 366–372. 16424113
[46]
Iordanov, M.S.; Pribnow, D.; Magun, J.L.; Dinh, T.H.; Pearson, J.A.; Chen, S.L.; Magun, B.E. Ribotoxic stress response: activation of the stress-activated protein kinase JNK1 by inhibitors of the peptidyl transferase reaction and by sequence-specific RNA damage to the alpha-sarcin/ricin loop in the 28S rRNA. Mol. Cell Biol.?1997, 17, 3373–3381. 9154836
[47]
Gray, J.S.; Bae, H.K.; Li, J.C.; Lau, A.S.; Pestka, J.J. Double-stranded RNA-activated protein kinase mediates induction of interleukin-8 expression by deoxynivalenol, Shiga toxin 1, and ricin in monocyte. Toxicol. Sci.?2008, 105, 322–330, doi:10.1093/toxsci/kfn128. 18599499
[48]
Islam, Z.; Gray, J.S.; Pestka, J.J. p38 Mitogen-activated protein kinase mediates IL-8 induction by the ribotoxin deoxynivalenol in human monocytes. Toxicol. Appl. Pharmacol.?2006, 213, 235–244, doi:10.1016/j.taap.2005.11.001. 16364386
[49]
Zhou, H.R.; Islam, Z.; Pestka, J.J. Rapid, sequential activation of mitogen-activated protein kinases and transcription factors precedes proinflammatory cytokine mRNA expression in spleens of mice exposed to the trichothecene vomitoxin. Toxicol. Sci.?2003, 72, 130–142, doi:10.1093/toxsci/kfg006. 12604842
[50]
Zhou, H.R.; Jia, Q.; Pestka, J.J. Ribotoxic stress response to the trichothecene deoxynivalenol in the macrophage involves the SRC family kinase Hck. Toxicol. Sci.?2005, 85, 916–926, doi:10.1093/toxsci/kfi146. 15772366
[51]
Tsygankov, A.Y.; Shore, S.K. Src: regulation, role in human carcinogenesis and pharmacological inhibitors. Curr. Pharm. Des.?2004, 10, 1745–1756, doi:10.2174/1381612043384457. 15180537
[52]
English, B.K.; Ihle, J.N.; Myracle, A.; Yi, T. Hck tyrosine kinase activity modulates tumor necrosis factor production by murine macrophages. J. Exp. Med.?1993, 178, 1017–1022, doi:10.1084/jem.178.3.1017. 8350043
[53]
Yang, G.H.; Jarvis, B.B.; Chung, Y.J.; Pestka, J.J. Apoptosis induction by the satratoxins and other trichothecene mycotoxins: relationship to ERK, p38 MAPK, and SAPK/JNK activation. Toxicol. Appl. Pharmacol.?2000, 164, 149–160, doi:10.1006/taap.1999.8888. 10764628
[54]
Zhou, H.R.; Islam, Z.; Pestka, J.J. Induction of competing apoptotic and survival signaling pathways in the macrophage by the ribotoxic trichothecene deoxynivalenol. Toxicol. Sci.?2005, 87, 113–122, doi:10.1093/toxsci/kfi234. 15976193
[55]
Islam, Z.; Nagase, M.; Ota, A.; Ueda, S.; Yoshizawa, T.; Sakato, N. Structure-function relationship of T-2 toxin and its metabolites in inducing thymic apoptosis in vivo in mice. Biosci. Biotechnol. Biochem.?1998, 62, 1492–1497. 9757554
[56]
Islam, Z.; Nagase, M.; Yoshizawa, T.; Yamauchi, K.E.; Sakato, N. T-2 toxin induces thymic apoptosis in vivo in mice. Toxicol. Appl. Pharmacol.?1998, 148, 205–214, doi:10.1006/taap.1997.8338. 9473527
[57]
Le Drean, G.; Auffret, M.; Batina, P.; Arnold, F.; Sibiril, Y.; Arzur, D.; Parent-Massin, D. Myelotoxicity of trichothecenes and apoptosis: An in vitro study on human cord blood CD34(+) hematopoietic progenitor. Toxicol. Vitro?2005, 19, 1015–1024, doi:10.1016/j.tiv.2005.03.017.
[58]
Miura, K.; Nakajima, Y.; Yamanaka, N.; Terao, K.; Shibato, T.; Ishino, S. Induction of apoptosis with fusarenon-X in mouse thymocytes. Toxicology?1998, 127, 195–206, doi:10.1016/S0300-483X(98)00023-7. 9699806
[59]
Nagase, M.; Alam, M.M.; Tsushima, A.; Yoshizawa, T.; Sakato, N. Apoptosis induction by T-2 toxin: Activation of caspase-9, caspase-3, and DFF-40/CAD through cytosolic release of cytochrome c in HL-60 cells. Biosci. Biotechnol. Biochem.?2001, 65, 1741–1747, doi:10.1271/bbb.65.1741. 11577712
[60]
Poapolathep, A.; Kumagai, S.; Suzuki, H.; Doi, K. Development of early apoptosis and changes in T-cell subsets in mouse thymocyte primary cultures treated with nivalenol. Exp. Mol. Pathol.?2004, 77, 149–152, doi:10.1016/j.yexmp.2004.04.004. 15351239
[61]
Yoshino, N.; Takizawa, M.; Akiba, H.; Okumura, H.; Tashiro, F.; Honda, M.; Ueno, Y. Transient elevation of intracellular calcium ion levels as an early event in T-2 toxin-induced apoptosis in human promyelotic cell line HL-60. Nat. Toxins?1996, 4, 234–241. 8946399
Islam, Z.; Pestka, J.J. Role of IL-1 beta in LPS potentiation of deoxynivalenol-induced leukocyte apoptosis in mice. Toxicol. Sci.?2003, 72, 1605.
[64]
Islam, Z.; Pestka, J.J. LPS priming potentiates and prolongs proinflammatory cytokine response to the trichothecene deoxynivalenol in the mouse. Toxicol. Appl. Pharmacol.?2006, 211, 53–63, doi:10.1016/j.taap.2005.04.031. 16009389
[65]
Yang, G.H.; Li, S.; Pestka, J.J. Down-regulation of the endoplasmic reticulum chaperone GRP78/BiP by vomitoxin (Deoxynivalenol). Toxicol. Appl. Pharmacol.?2000, 162, 207–217, doi:10.1006/taap.1999.8842. 10652249
[66]
Pestka, J.J.; Uzarski, R.L.; Islam, Z. Induction of apoptosis and cytokine production in the Jurkat human T cells by deoxynivalenol: role of mitogen-activated protein kinases and comparison to other 8-ketotrichothecenes. Toxicology?2005, 206, 207–219, doi:10.1016/j.tox.2004.08.020. 15588914
[67]
Uzarski, R.L.; Pestka, J.J. Comparative susceptibility of B cells with different lineages to cytotoxicity and apoptosis induction by translational inhibitors. J. Toxicol. Environ. Health A?2003, 66, 2105–2118, doi:10.1080/15287390390211315. 14710595
[68]
Uzarski, R.L.; Islam, Z.; Pestka, J.J. Potentiation of trichothecene-induced leukocyte cytotoxicity and apoptosis by TNF-alpha and Fas activation. Chem. Biol. Interact.?2003, 146, 105–119, doi:10.1016/S0009-2797(03)00088-7. 14597125
[69]
Pestka, J.J.; Yan, D.; King, L.E. Flow cytometric analysis of the effects of in-vitro exposure to vomitoxin (deoxynivalenol) on apoptosis in murine T-cells, B-cells and IgA(+)-cells. Food Chem. Toxicol.?1994, 32, 1125–1136, doi:10.1016/0278-6915(94)90128-7. 7813984
[70]
Shi, Y.; Porter, K.; Parameswaran, N.; Bae, H.K.; Pestka, J.J. Role of GRP78/BiP Degradation and ER Stress in Deoxynivalenol-Induced Interleukin-6 Upregulation in the Macrophage. Toxicol. Sci.?2009, 109, 247–255, doi:10.1093/toxsci/kfp060. 19336499
[71]
Parent-Massin, D. Haematotoxicity of trichothecenes. Toxicol. Lett.?2004, 153, 75–81, doi:10.1016/j.toxlet.2004.04.024. 15342083
[72]
Bae, H.K.; Shinozuka, J.; Islam, Z.; Pestka, J.J. Satratoxin G interaction with 40S and 60S ribosomal subunits precedes apoptosis in the macrophage. Toxicol. Appl. Pharmacol.?2009, 237, 137–145, doi:10.1016/j.taap.2009.03.006. 19306889
[73]
Ting, J.P.Y.; Duncan, J.A.; Lei, Y. How the Noninflammasome NLRs Function in the Innate Immune System. Science?2010, 327, 286–290, doi:10.1126/science.1184004. 20075243
[74]
Bae, H.K.; Pestka, J.J. Deoxynivalenol induces p38 interaction with the ribosome in monocytes and macrophages. Toxicol. Sci.?2008, 105, 59–66, doi:10.1093/toxsci/kfn102. 18502741
[75]
Bae, H.; Gray, J.S.; Li, M.; Vines, L.; Kim, J.; Pestka, J.J. Hematopoetic Cell Kinase Associates with the 40S Ribosomal Subunit and Mediates the Ribotoxic Stress Response to Deoxynivalenol in Mononuclear Phagocytes. Toxicol. Sci.?2010, 115, 444–452, doi:10.1093/toxsci/kfq055. 20181660
[76]
Li, M.X.; Pestka, J.J. Comparative induction of 28S ribosomal RNA cleavage by ricin and the trichothecenes deoxynivalenol and T-2 toxin in the macrophage. Toxicol. Sci.?2008, 105, 67–78, doi:10.1093/toxsci/kfn111. 18535001
[77]
Yorimitsu, T.; Klionsky, D.J. Eating the endoplasmic reticulum: quality control by autophagy. Trends Cell. Biol.?2007, 17, 279–285, doi:10.1016/j.tcb.2007.04.005. 17481899
Osman, A.M.; Pennings, J.L.A.; Blokland, M.; Peijnenburg, A.; van Loveren, H. Protein expression profiling of mouse thymoma cells upon exposure to the trichothecene deoxynivalenol (DON): Implications for its mechanism of action. J. Immunotoxicol.?2009.
[80]
Matsukawa, J.; Matsuzawa, A.; Takeda, K.; Ichijo, H. The ASK1-MAP Kinase Cascades in Mammalian Stress Response. J. Biochem.?2004, 136, 261–265, doi:10.1093/jb/mvh134. 15598880
[81]
Iordanov, M.S.; Magun, B.E. Loss of cellular K+ mimics ribotoxic stress. Inhibition of protein synthesis and activation of the stress kinases SEK1/MKK4, stress-activated protein kinase/c-Jun NH2-terminal kinase 1, and p38/HOG1 by palytoxin. J. Biol. Chem.?1998, 273, 3528–3534, doi:10.1074/jbc.273.6.3528. 9452478
[82]
Yamauchi, T.; Keough, R.A.; Gonda, T.J.; Ishii, S. Ribosomal stress induces processing of Mybbp1a and its translocation from the nucleolus to the nucleoplasm. Genes Cells?2008, 13, 27–39. 18173745
[83]
Azcona Olivera, J.I.; Ouyang, Y.; Murtha, J.; Chu, F.S.; Pestka, J.J. Induction of cytokine mRNAs in mice after oral exposure to the trichothecene vomitoxin (deoxynivalenol): relationship to toxin distribution and protein synthesis inhibition. Toxicol. Appl. Pharmacol.?1995, 133, 109–120, doi:10.1006/taap.1995.1132. 7597700
[84]
Pestka, J.J.; Amuzie, C.J. Tissue distribution and proinflammatory cytokine gene expression following acute oral exposure to deoxynivalenol: comparison of weanling and adult mice. Food Chem. Toxicol.?2008, 46, 2826–2831, doi:10.1016/j.fct.2008.05.016. 18614267
[85]
Amuzie, C.J.; Harkema, J.R.; Pestka, J.J. Tissue distribution and proinflammatory cytokine induction by the trichothecene deoxynivalenol in the mouse: comparison of nasal vs. oral exposure. Toxicology?2008, 248, 39–44, doi:10.1016/j.tox.2008.03.005. 18433975
[86]
Kinser, S.; Jia, Q.; Li, M.; Laughter, A.; Cornwell, P.; Corton, J.C.; Pestka, J.J. Gene expression profiling in spleens of deoxynivalenol-exposed mice: immediate early genes as primary targets. J. Toxicol. Environ. Health A?2004, 67, 1423–1441, doi:10.1080/15287390490483827. 15371230
[87]
Zhou, H.R.; Yan, D.; Pestka, J.J. Induction of cytokine gene expression in mice after repeated and subchronic oral exposure to vomitoxin (Deoxynivalenol): differential toxin-induced hyporesponsiveness and recovery. Toxicol. Appl. Pharmacol.?1998, 151, 347–358, doi:10.1006/taap.1998.8469. 9707511
[88]
Zhou, H.R.; Harkema, J.R.; Yan, D.; Pestka, J.J. Amplified proinflammatory cytokine expression and toxicity in mice coexposed to lipopolysaccharide and the trichothecene vomitoxin (deoxynivalenol). J. Toxicol. Environ. Health?1999, 57, 115–136, doi:10.1080/009841099157818.
[89]
Zhou, H.R.; Islam, Z.; Pestka, J.J. Kinetics of lipopolysaccharide-induced transcription factor activation/inactivation and relation to proinflammatory gene expression in the murine spleen. Toxicol. Appl. Pharmacol.?2003, 187, 147–161, doi:10.1016/S0041-008X(02)00077-7. 12662898
[90]
Clark, I.A. The advent of the cytokine storm. Immunol. Cell. Biol.?2007, 85, 271–273, doi:10.1038/sj.icb.7100062. 17551531
[91]
Roth, R.A.; Harkema, J.R.; Pestka, J.J.; Ganey, P.E. Is exposure to bacterial endotoxin a determinant of susceptibility to intoxication from xenobiotic agents? Toxicol. Appl. Pharmacol.?1997, 147, 300–311, doi:10.1006/taap.1997.8301. 9439725
[92]
Islam, Z.; King, L.E.; Fraker, P.J.; Pestka, J.J. Differential induction of glucocorticoid-dependent apoptosis in murine lymphoid subpopulations in vivo following coexposure to lipopolysaccharide and vomitoxin (deoxynivalenol). Toxicol. Appl. Pharmacol.?2003, 187, 69–79, doi:10.1016/S0041-008X(02)00031-5. 12649039
[93]
Islam, Z.; Moon, Y.S.; Zhou, H.R.; King, L.E.; Fraker, P.J.; Pestka, J.J. Endotoxin potentiation of trichothecene-induced lymphocyte apoptosis is mediated by up-regulation of glucocorticoids. Toxicol. Appl. Pharmacol.?2002, 180, 43–55, doi:10.1006/taap.2002.9374. 11922776
[94]
Islam, Z.; Pestka, J.J. Role of IL-1 beta in endotoxin potentiation of deoxynivalenol-induced corticosterone response and leukocyte apoptosis in mice. Toxicol. Sci.?2003, 74, 93–102, doi:10.1093/toxsci/kfg119. 12773775
[95]
Islam, Z.; Pestka, J.J. LPS priming potentiates and prolongs proinflammatory cytokine response to the trichothecene deoxynivalenol in the mouse. Toxicol. Appl. Pharmacol.?2005, 211, 53–63. 16009389
[96]
Kolf-Clauw, M.; Castellote, J.; Joly, B.; Bourges-Abella, N.; Raymond-Letron, I.; Pinton, P.; Oswald, I.P. Development of a pig jejunal explant culture for studying the gastrointestinal toxicity of the mycotoxin deoxynivalenol: Histopathological analysis. Toxicol. Vitro?2009, 23, 1580–1584, doi:10.1016/j.tiv.2009.07.015.
[97]
Maresca, M.; Yahi, N.; Younes-Sakr, L.; Boyron, M.; Caporiccio, B.; Fantini, J. Both direct and indirect effects account for the pro-inflammatory activity of enteropathogenic mycotoxins on the human intestinal epithelium: Stimulation of interleukin-8 secretion, potentiation of interleukin-1 beta effect and increase in the transepithelial passage of commensal bacteria. Toxicol. Appl. Pharmacol.?2008, 228, 84–92, doi:10.1016/j.taap.2007.11.013. 18308354
[98]
Sergent, T.; Parys, M.; Garsou, S.; Pussemier, L.; Schneider, Y.J.; Larondelle, Y. Deoxynivalenol transport across human intestinal Caco-2 cells and its effects on cellular metabolism at realistic intestinal concentrations. Toxicol. Lett.?2006, 164, 167–176, doi:10.1016/j.toxlet.2005.12.006. 16442754
[99]
Pinton, P.; Nougayrede, J.P.; Del Rio, J.C.; Moreno, C.; Marin, D.E.; Ferrier, L.; Bracarense, A.P.; Kolf-Clauw, M.; Oswald, I.P. The food contaminant deoxynivalenol decreases intestinal barrier permeability and reduces claudin expression. Toxicol. Appl. Pharmacol.?2009, 237, 41–48, doi:10.1016/j.taap.2009.03.003. 19289138
[100]
Amuzie, C.J.; Shinozuka, J.; Pestka, J.J. Induction of suppressors of cytokine signaling by the trichothecene deoxynivalenol in the mouse. Toxicol. Sci.?2009, 111, 277–287, doi:10.1093/toxsci/kfp150. 19625342
[101]
Konsman, J.P.; Parnet, P.; Dantzer, R. Cytokine-induced sickness behaviour: mechanisms and implications. Trends Neurosci.?2002, 25, 154–159, doi:10.1016/S0166-2236(00)02088-9. 11852148
[102]
Croker, B.A.; Kiu, H.; Nicholson, S.E. SOCS regulation of the JAK/STAT signalling pathway. Semin.Cell. Dev. Biol.?2008, 19, 414–422, doi:10.1016/j.semcdb.2008.07.010. 18708154
Voss, K.A. A New Perspective on Deoxynivalenol and Growth Suppression. Toxicol. Sci.?2010, 113, 281–283, doi:10.1093/toxsci/kfp287. 19933702
[105]
Pestka, J.J.; Moorman, M.A.; Warner, R.L. Dysregulation of IgA production and IgA nephropathy induced by the trichothecene vomitoxin. Food Chem.Toxicol.?1989, 27, 361–368, doi:10.1016/0278-6915(89)90141-5. 2676788
[106]
Pestka, J.J. Deoxynivalenol-induced IgA production and IgA nephropathy-aberrant mucosal immune response with systemic repercussions. Toxicol. Lett.?2003, 140–141, 287–295, doi:10.1016/S0378-4274(03)00024-9. 12676476
[107]
D'Amico, G. The commonest glomerulonephritis in the world: IgA nephropathy. Q. J. Med.?1987, 64, 709–727. 3329736
[108]
Dong, W.; Pestka, J.J. Persistent dysregulation of IgA production and IgA nephropathy in the B6C3F1 mouse following withdrawal of dietary vomitoxin (deoxynivalenol). Fundam. Appl. Toxicol.?1993, 20, 38–47, doi:10.1006/faat.1993.1005. 8432427
[109]
Pestka, J.J.; Dong, W.; Warner, R.L.; Rasooly, L.; Bondy, G.S.; Brooks, K.H. Elevated membrane IgA+ and CD4+ (T helper) populations in murine Peyer's patch and splenic lymphocytes during dietary administration of the trichothecene vomitoxin (deoxynivalenol). Food Chem. Toxicol.?1990, 28, 409–420, doi:10.1016/0278-6915(90)90087-4. 2145206
[110]
Pestka, J.J.; Dong, W.; Warner, R.L.; Rasooly, L.; Bondy, G.S. Effect of dietary administration of the trichothecene vomitoxin (deoxynivalenol) on IgA and IgG secretion by Peyer's patch and splenic lymphocytes. Food Chem. Toxicol.?1990, 28, 693–699, doi:10.1016/0278-6915(90)90145-D. 2276698
[111]
Pestka, J.J.; Moorman, M.A.; Warner, R.L. Altered serum immunoglobulin response to model intestinal antigens during dietary exposure to vomitoxin (deoxynivalenol). Toxicol. Lett.?1990, 50, 75–84, doi:10.1016/0378-4274(90)90254-J. 2296780
[112]
Rasooly, L.; Abouzied, M.M.; Brooks, K.H.; Pestka, J.J. Polyspecific and autoreactive IgA secreted by hybridomas derived from Peyer's patches of vomitoxin-fed mice: characterization and possible pathogenic role in IgA nephropathy. Food Chem.Toxicol.?1994, 32, 337–348, doi:10.1016/0278-6915(94)90072-8. 8206429
[113]
Rasooly, L.; Pestka, J.J. Vomitoxin-induced dysregulation of serum IgA, IgM and IgG reactive with gut bacterial and self antigens. Food Chem.Toxicol.?1992, 30, 499–504, doi:10.1016/0278-6915(92)90101-P. 1500035
[114]
Rasooly, L.; Pestka, J.J. Polyclonal autoreactive IgA increase and mesangial deposition during vomitoxin-induced IgA nephropathy in the BALB/c mouse. Food Chem.Toxicol.?1994, 32, 329–336, doi:10.1016/0278-6915(94)90071-X. 8206428
[115]
Zhou, H.R.; Yan, D.; Pestka, J.J. Differential cytokine mRNA expression in mice after oral exposure to the trichothecene vomitoxin (deoxynivalenol): dose response and time course. Toxicol. Appl. Pharmacol.?1997, 144, 294–305, doi:10.1006/taap.1997.8132. 9194413
[116]
Beagley, K.W.; Elson, C.O. Cells and cytokines in mucosal immunity and inflammation. Gastroenterol. Clin. North Am.?1992, 21, 347–366. 1512047
[117]
Yan, D.; Zhou, H.R.; Brooks, K.H.; Pestka, J.J. Role of macrophages in elevated IgA and IL-6 production by Peyer's patch cultures following acute oral vomitoxin exposure. Toxicol. Appl. Pharmacol.?1998, 148, 261–273, doi:10.1006/taap.1997.8326. 9473534
[118]
Pestka, J.J.; Zhou, H.R. Interleukin-6-deficient mice refractory to IgA dysregulation but not anorexia induction by vomitoxin (deoxynivalenol) ingestion. Food Chem. Toxicol.?2000, 38, 565–575, doi:10.1016/S0278-6915(00)00041-7. 10942317
[119]
Turner, P.C.; Burley, V.J.; Rothwell, J.A.; White, K.L.M.; Cade, J.E.; Wild, C.P. Deoxynivalenol: Rationale for development and application of a urinary biomarker. Food Addit. Contam.?2008, 25, 864–871, doi:10.1080/02652030801895040.
[120]
Chung, Y.J.; Zhou, H.R.; Pestka, J.J. Up-regulation of macrophage inflammatory protein-2 and complement 3A receptor by the trichothecenes deoxynivalenol and satratoxin G. Toxicology?2003, 186, 51–65, doi:10.1016/S0300-483X(02)00605-4. 12604170