Enterotoxigenic Escherichia coli (ETEC) associated diarrhea is responsible for roughly half a million deaths per year, the majority taking place in developing countries. The main agent responsible for these diseases is the bacterial heat-stable enterotoxin STa. STa is secreted by ETEC and after secretion binds to the intestinal receptor guanylyl cyclase C (GC-C), thus triggering a signaling cascade that eventually leads to the release of electrolytes and water in the intestine. Additionally, GC-C is a specific marker for colorectal carcinoma and STa is suggested to have an inhibitory effect on intestinal carcinogenesis. To understand the conformational events involved in ligand binding to GC-C and to devise therapeutic strategies to treat both diarrheal diseases and colorectal cancer, it is paramount to obtain structural information on the receptor ligand system. Here we summarize the currently available structural data and report on physiological consequences of STa binding to GC-C in intestinal epithelia and colorectal carcinoma cells.
References
[1]
World Health Organization. Future Directions for Research on Enterotoxigenic Escherichia coli Vaccines for Developing Countries. Wkly. Epidemiol. Rec.?2006, 81, 97–104. 16671213
[2]
Turner, S.M.; Chaudhuri, R.R.; Jiang, Z.D.; DuPont, H.; Gyles, C.; Penn, C.W.; Pallen, M.J.; Henderson, I.R. Phylogenetic Comparisons Reveal Multiple Acquisitions of the Toxin Genes by Enterotoxigenic Escherichia coli Strains of Different Evolutionary Lineages. J. Clin. Microbiol.?2006, 44, 4528–4536.
[3]
Sack, D.A.; McLaughlin, J.C.; Sack, R.B.; Orskov, F.; Orskov, I. Enterotoxigenic Escherichia coli Isolated from Patients at a Hospital in Dacca. J. Infect. Dis.?1977, 135, 275–280.
[4]
Spangler, B.D. Structure and Function of Cholera Toxin and the Related Escherichia coli Heat-Labile Enterotoxin. Microbiol. Rev.?1992, 56, 622–647.
[5]
Sack, R.B. Human Diarrheal Disease Caused by Enterotoxigenic Escherichia coli. Annu. Rev. Microbiol.?1975, 29, 333–353.
[6]
Dreyfus, L.A.; Harville, B.; Howard, D.E.; Shaban, R.; Beatty, D.M.; Morris, S.J. Calcium Influx Mediated by the Escherichia coli Heat-Stable Enterotoxin B (STB). Proc. Natl. Acad. Sci. USA?1993, 90, 3202–3206.
[7]
Moseley, S.L.; Samadpour-Motalebi, M.; Falkow, S. Plasmid Association and Nucleotide Sequence Relationships of Two Genes Encoding Heat-Stable Enterotoxin Production in Escherichia coli H-10407. J. Bacteriol.?1983, 156, 441–443.
[8]
So, M.; McCarthy, B.J. Nucleotide Sequence of the Bacterial Transposon Tn1681 Encoding a Heat-Stable (ST) Toxin and Its Identification in Enterotoxigenic Escherichia coli Strains. Proc. Natl. Acad. Sci. USA?1980, 77, 4011–4015.
[9]
Dallas, W.S. The Heat-Stable Toxin I Gene from Escherichia coli 18D. J. Bacteriol.?1990, 172, 5490–5493.
Takao, T.; Tominaga, N.; Shimonishi, Y.; Hara, S.; Inoue, T.; Miyama, A. Primary Structure of Heat-Stable Enterotoxin Produced by Yersinia Enterocolitica. Biochem. Biophys. Res. Commun.?1984, 125, 845–851.
[12]
Guarino, A.; Capano, G.; Malamisura, B.; Alessio, M.; Guandalini, S.; Rubino, A. Production of Escherichia coli STa-Like Heat-Stable Enterotoxin by Citrobacter freundii Isolated from Humans. J. Clin. Microbiol.?1987, 25, 110–114.
[13]
Takeda, T.; Peina, Y.; Ogawa, A.; Dohi, S.; Abe, H.; Nair, G.B.; Pal, S.C. Detection of Heat-Stable Enterotoxin in a Cholera Toxin Gene-Positive Strain of Vibrio cholerae O1. FEMS Microbiol. Lett.?1991, 64, 23–27.
[14]
Takao, T.; Shimonishi, Y.; Kobayashi, M.; Nishimura, O.; Arita, M.; Takeda, T.; Honda, T.; Miwatani, T. Amino Acid Sequence of Heat-Stable Enterotoxin Produced by Vibrio cholerae Non-01. FEBS Lett.?1985, 193, 250–254.
[15]
Arita, M.; Takeda, T.; Honda, T.; Miwatani, T. Purification and Characterization of Vibrio cholerae Non-O1 Heat-Stable Enterotoxin. Infect. Immun.?1986, 52, 45–49.
[16]
Huang, X.; Yoshino, K.; Nakao, H.; Takeda, T. Nucleotide Sequence of a Gene Encoding the Novel Yersinia Enterocolitica Heat-Stable Enterotoxin that Includes a Pro-Region-Like Sequence in Its Mature Toxin Molecule. Microb. Pathog.?1997, 22, 89–97.
[17]
Savarino, S.J.; Fasano, A.; Robertson, D.C.; Levine, M.M. Enteroaggregative Escherichia coli Elaborate a Heat-Stable Enterotoxin Demonstrable in an in Vitro Rabbit Intestinal Model. J. Clin. Invest.?1991, 87, 1450–1455.
[18]
Savarino, S.J.; Fasano, A.; Watson, J.; Martin, B.M.; Levine, M.M.; Guandalini, S.; Guerry, P. Enteroaggregative Escherichia coli Heat-Stable Enterotoxin 1 Represents another Subfamily of E. coli Heat-Stable Toxin. Proc. Natl. Acad. Sci. USA?1993, 90, 3093–3097.
[19]
Paton, J.C.; Paton, A.W. Pathogenesis and Diagnosis of Shiga Toxin-Producing Escherichia coli Infections. Clin. Microbiol. Rev.?1998, 11, 450–479.
[20]
Yoshimura, S.; Ikemura, H.; Watanabe, H.; Aimoto, S.; Shimonishi, Y.; Hara, S.; Takeda, T.; Miwatani, T.; Takeda, Y. Essential Structure for Full Enterotoxigenic Activity of Heat-Stable Enterotoxin Produced by Enterotoxigenic Escherichia coli. FEBS Lett.?1985, 181, 138–142.
[21]
Currie, M.G.; Fok, K.F.; Kato, J.; Moore, R.J.; Hamra, F.K.; Duffin, K.L.; Smith, C.E. Guanylin: An Endogenous Activator of Intestinal Guanylate Cyclase. Proc. Natl. Acad. Sci. USA?1992, 89, 947–951.
[22]
Hamra, F.K.; Forte, L.R.; Eber, S.L.; Pidhorodeckyj, N.V.; Krause, W.J.; Freeman, R.H.; Chin, D.T.; Tompkins, J.A.; Fok, K.F.; Smith, C.E. Uroguanylin: Structure and Activity of a Second Endogenous Peptide that Stimulates Intestinal Guanylate Cyclase. Proc. Natl. Acad. Sci. USA?1993, 90, 10464–10468.
[23]
Forte, L.R.; Eber, S.L.; Fan, X.; London, R.M.; Wang, Y.; Rowland, L.M.; Chin, D.T.; Freeman, R.H.; Krause, W.J. Lymphoguanylin: Cloning and Characterization of a Unique Member of the Guanylin Peptide Family. Endocrinology?1999, 140, 1800–1806.
[24]
Shimonishi, Y.; Hidaka, Y.; Koizumi, M.; Hane, M.; Aimoto, S.; Takeda, T.; Miwatani, T.; Takeda, Y. Mode of Disulfide Bond Formation of a Heat-Stable Enterotoxin (STh) Produced by a Human Strain of Enterotoxigenic Escherichia coli. FEBS Lett.?1987, 215, 165–170.
[25]
Gariepy, J.; Judd, A.K.; Schoolnik, G.K. Importance of Disulfide Bridges in the Structure and Activity of Escherichia coli Enterotoxin ST1b. Proc. Natl. Acad. Sci. USA?1987, 84, 8907–8911.
[26]
Yamasaki, S.; Hidaka, Y.; Hideaki, I.; Takeda, Y.; Shimonishi, Y. Structural Requirements for the Spatial Structure and Toxicity of Heat-Stable Enterotoxin (STh) of Enterotoxigenic Escherichia Coli. Bull. Chem. Soc. Jpn.?1988, 61, 1701–1706.
[27]
Skelton, N.J.; Garcia, K.C.; Goeddel, D.V.; Quan, C.; Burnier, J.P. Determination of the Solution Structure of the Peptide Hormone Guanylin: Observation of a Novel Form of Topological Stereoisomerism. Biochemistry?1994, 33, 13581–13592.
[28]
Marx, U.C.; Klodt, J.; Meyer, M.; Gerlach, H.; Rosch, P.; Forssmann, W.G.; Adermann, K. One Peptide, Two Topologies: Structure and Interconversion Dynamics of Human Uroguanylin Isomers. J. Pept. Res.?1998, 52, 229–240.
[29]
Klodt, J.; Kuhn, M.; Marx, U.C.; Martin, S.; Rosch, P.; Forssmann, W.G.; Adermann, K. Synthesis, Biological Activity and Isomerism of Guanylate Cyclase C-Activating Peptides Guanylin and Uroguanylin. J. Pept. Res.?1997, 50, 222–230.
[30]
Schulz, A.; Escher, S.; Marx, U.C.; Meyer, M.; Rosch, P.; Forssmann, W.G.; Adermann, K. Carboxy-Terminal Extension Stabilizes the Topological Stereoisomers of Guanylin. J. Pept. Res.?1998, 52, 518–525.
[31]
Schulz, A.; Marx, U.C.; Tidten, N.; Lauber, T.; Hidaka, Y.; Adermann, K. Side Chain Contributions to the Interconversion of the Topological Isomers of Guanylin-Like Peptides. J. Pept. Sci.?2005, 11, 319–330.
[32]
Okamoto, K.; Takahara, M. Synthesis of Escherichia coli Heat-Stable Enterotoxin STp as a Pre-Pro form and Role of the Pro Sequence in Secretion. J. Bacteriol.?1990, 172, 5260–5265.
[33]
Rasheed, J.K.; Guzman-Verduzco, L.M.; Kupersztoch, Y.M. Two Precursors of the Heat-Stable Enterotoxin of Escherichia coli: Evidence of Extracellular Processing. Mol. Microbiol.?1990, 4, 265–273.
[34]
Pugsley, A.P. The Complete General Secretory Pathway in Gram-Negative Bacteria. Microbiol. Rev.?1993, 57, 50–108.
[35]
Yamanaka, H.; Fuke, Y.; Hitotsubashi, S.; Fujii, Y.; Okamoto, K. Functional Properties of Pro Region of Escherichia coli Heat-Stable Enterotoxin. Microbiol. Immunol.?1993, 37, 195–205.
[36]
Yamanaka, H.; Kameyama, M.; Baba, T.; Fujii, Y.; Okamoto, K. Maturation Pathway of Escherichia coli Heat-Stable Enterotoxin I: Requirement of DsbA for Disulfide Bond Formation. J. Bacteriol.?1994, 176, 2906–2913.
[37]
Yamanaka, H.; Nomura, T.; Fujii, Y.; Okamoto, K. Extracellular Secretion of Escherichia coli Heat-Stable Enterotoxin I across the Outer Membrane. J. Bacteriol.?1997, 179, 3383–3390.
[38]
Yang, Y.; Gao, Z.; Guzman-Verduzco, L.M.; Tachias, K.; Kupersztoch, Y.M. Secretion of the STA3 Heat-Stable Enterotoxin of Escherichia coli: Extracellular Delivery of Pro-STA Is Accomplished by either Pro or STA. Mol. Microbiol.?1992, 6, 3521–3529.
[39]
Batisson, I.; der Vartanian, M. Extracellular DsbA-Insensitive Folding of Escherichia coli Heat-Stable Enterotoxin STa in Vitro. J. Biol. Chem.?2000, 275, 10582–10589.
[40]
Batisson, I.; der Vartanian, M.; Gaillard-Martinie, B.; Contrepois, M. Full Capacity of Recombinant Escherichia coli Heat-Stable Enterotoxin Fusion Proteins for Extracellular Secretion, Antigenicity, Disulfide Bond Formation, and Activity. Infect. Immun.?2000, 68, 4064–4074.
[41]
Matecko, I.; Burmann, B.M.; Schweimer, K.; Kalbacher, H.; Einsiedel, J.; Gmeiner, P.; R?sch, P. Structural Characterization of the E. Coli Heat Stable Enterotoxin STh. Open Spectrosc. J.?2008, 2, 34–39.
[42]
Ozaki, H.; Sato, T.; Kubota, H.; Hata, Y.; Katsube, Y.; Shimonishi, Y. Molecular Structure of the Toxin Domain of Heat-Stable Enterotoxin Produced by a Pathogenic Strain of Escherichia coli. A Putative Binding Site for a Binding Protein on Rat Intestinal Epithelial Cell Membranes. J. Biol. Chem.?1991, 266, 5934–5941. 2005130
[43]
Sato, T.; Ozaki, H.; Hata, Y.; Kitagawa, Y.; Katsube, Y.; Shimonishi, Y. Structural Characteristics for Biological Activity of Heat-Stable Enterotoxin Produced by Enterotoxigenic Escherichia coli: X-ray Crystallography of Weakly Toxic and Nontoxic Analogs. Biochemistry?1994, 33, 8641–8650.
[44]
Sato, T.; Shimonishi, Y. Structural Features of Escherichia coli Heat-Stable Enterotoxin that Activates Membrane-Associated Guanylyl Cyclase. J. Pept. Res.?2004, 63, 200–206.
[45]
Richardson, J.S. The Anatomy and Taxonomy of Protein Structure. Adv. Protein Chem.?1981, 34, 167–339.
[46]
Carpick, B.W.; Gariepy, J. Structural Characterization of Functionally Important Regions of the Escherichia coli Heat-Stable Enterotoxin STIb. Biochemistry?1991, 30, 4803–4809.
[47]
Waldman, S.A.; O'Hanley, P. Influence of a Glycine or Proline Substitution on the Functional Properties of a 14-Amino-Acid Analog of Escherichia coli Heat-Stable Enterotoxin. Infect. Immun.?1989, 57, 2420–2424.
[48]
Wolfe, H.R.; Waldman, S.A. A Comparative Molecular Field Analysis (COMFA) of the Structural Determinants of Heat-Stable Enterotoxins Mediating Activation of Guanylyl Cyclase C. J. Med. Chem.?2002, 45, 1731–1734.
[49]
Gariepy, J.; Lane, A.; Frayman, F.; Wilbur, D.; Robien, W.; Schoolnik, G.K.; Jardetzky, O. Structure of the Toxic Domain of the Escherichia coli Heat-Stable Enterotoxin ST I. Biochemistry?1986, 25, 7854–7866.
[50]
Schulz, S.; Green, C.K.; Yuen, P.S.; Garbers, D.L. Guanylyl Cyclase Is a Heat-Stable Enterotoxin Receptor. Cell?1990, 63, 941–948.
[51]
Vaandrager, A.B.; Schulz, S.; de Jonge, H.R.; Garbers, D.L. Guanylyl Cyclase C Is an N-Linked Glycoprotein Receptor that Accounts for Multiple Heat-Stable Enterotoxin-Binding Proteins in the Intestine. J. Biol. Chem.?1993, 268, 2174–2179.
[52]
de Jonge, H.R. Properties of Guanylate Cyclase and Levels of Cyclic GMP in Rat Small Intestinal Villous and Crypt Cells. FEBS Lett.?1975, 55, 143–152.
[53]
Basu, N.; Arshad, N.; Visweswariah, S.S. Receptor Guanylyl Cyclase C (GC-C): Regulation and Signal Transduction. Mol. Cell. Biochem.?2010, 334, 67–80.
[54]
Di Guglielmo, M.D.; Park, J.; Schulz, S.; Waldman, S.A. Nucleotide Requirements for CDX2 Binding to the Cis Promoter Element Mediating Intestine-Specific Expression of Guanylyl Cyclase C. FEBS Lett.?2001, 507, 128–132.
[55]
Swenson, E.S.; Mann, E.A.; Jump, M.L.; Giannella, R.A. Hepatocyte Nuclear Factor-4 Regulates Intestinal Expression of the guanylin/heat-Stable Toxin Receptor. Am. J. Physiol.?1999, 276, G728–G736.
[56]
Li, P.; Lin, J.E.; Chervoneva, I.; Schulz, S.; Waldman, S.A.; Pitari, G.M. Homeostatic Control of the Crypt-Villus Axis by the Bacterial Enterotoxin Receptor Guanylyl Cyclase C Restricts the Proliferating Compartment in Intestine. Am. J. Pathol.?2007, 171, 1847–1858.
[57]
de Sauvage, F.J.; Camerato, T.R.; Goeddel, D.V. Primary Structure and Functional Expression of the Human Receptor for Escherichia coli Heat-Stable Enterotoxin. J. Biol. Chem.?1991, 266, 17912–17918.
[58]
Vaandrager, A.B. Structure and Function of the Heat-Stable Enterotoxin receptor/guanylyl Cyclase C. Mol. Cell. Biochem.?2002, 230, 73–83.
[59]
Sharma, R.K. Membrane Guanylate Cyclase Is a Beautiful Signal Transduction Machine: Overview. Mol. Cell. Biochem.?2010, 334, 3–36.
[60]
van den Akker, F.; Zhang, X.; Miyagi, M.; Huo, X.; Misono, K.S.; Yee, V.C. Structure of the Dimerized Hormone-Binding Domain of a Guanylyl-Cyclase-Coupled Receptor. Nature?2000, 406, 101–104.
[61]
Hasegawa, M.; Matsumoto-Ishikawa, Y.; Hijikata, A.; Hidaka, Y.; Go, M.; Shimonishi, Y. Disulfide Linkages and a Three-Dimensional Structure Model of the Extracellular Ligand-Binding Domain of Guanylyl Cyclase C. Protein J.?2005, 24, 315–325.
[62]
Lauber, T.; Tidten, N.; Matecko, I.; Zeeb, M.; Rosch, P.; Marx, U.C. Design and Characterization of a Soluble Fragment of the Extracellular Ligand-Binding Domain of the Peptide Hormone Receptor Guanylyl Cyclase-C. Protein Eng. Des. Sel.?2009, 22, 1–7.
[63]
Hasegawa, M.; Hidaka, Y.; Matsumoto, Y.; Sanni, T.; Shimonishi, Y. Determination of the Binding Site on the Extracellular Domain of Guanylyl Cyclase C to Heat-Stable Enterotoxin. J. Biol. Chem.?1999, 274, 31713–31718.
[64]
Hasegawa, M.; Shimonishi, Y. Recognition and Signal Transduction Mechanism of Escherichia coli Heat-Stable Enterotoxin and Its Receptor, Guanylate Cyclase C. J. Pept. Res.?2005, 65, 261–271.
[65]
Biswas, K.H.; Shenoy, A.R.; Dutta, A.; Visweswariah, S.S. The Evolution of Guanylyl Cyclases as Multidomain Proteins: Conserved Features of Kinase-Cyclase Domain Fusions. J. Mol. Evol.?2009, 68, 587–602.
[66]
Koller, K.J.; de Sauvage, F.J.; Lowe, D.G.; Goeddel, D.V. Conservation of the Kinaselike Regulatory Domain Is Essential for Activation of the Natriuretic Peptide Receptor Guanylyl Cyclases. Mol. Cell. Biol.?1992, 12, 2581–2590.
[67]
Hanks, S.K.; Hunter, T. Protein Kinases 6. The Eukaryotic Protein Kinase Superfamily: Kinase (Catalytic) Domain Structure and Classification. FASEB J.?1995, 9, 576–596. 7768349
[68]
Hirayama, T.; Wada, A.; Iwata, N.; Takasaki, S.; Shimonishi, Y.; Takeda, Y. Glycoprotein Receptors for a Heat-Stable Enterotoxin (STh) Produced by Enterotoxigenic Escherichia coli. Infect. Immun.?1992, 60, 4213–4220.
[69]
Vaandrager, A.B.; Schulz, S.; de Jonge, H.R.; Garbers, D.L. Guanylyl Cyclase C Is an N-Linked Glycoprotein Receptor that Accounts for Multiple Heat-Stable Enterotoxin-Binding Proteins in the Intestine. J. Biol. Chem.?1993, 268, 2174–2179.
[70]
Ghanekar, Y.; Chandrashaker, A.; Tatu, U.; Visweswariah, S.S. Glycosylation of the Receptor Guanylate Cyclase C: Role in Ligand Binding and Catalytic Activity. Biochem. J.?2004, 379, 653–663.
[71]
Hasegawa, M.; Kawano, Y.; Matsumoto, Y.; Hidaka, Y.; Fujii, J.; Taniguchi, N.; Wada, A.; Hirayama, T.; Shimonishi, Y. Expression and Characterization of the Extracellular Domain of Guanylyl Cyclase C from a Baculovirus and Sf21 Insect Cells. Protein Expr. Purif.?1999, 15, 271–281.
[72]
Hasegawa, M.; Hidaka, Y.; Wada, A.; Hirayama, T.; Shimonishi, Y. The Relevance of N-Linked Glycosylation to the Binding of a Ligand to Guanylate Cyclase C. Eur. J. Biochem.?1999, 263, 338–346.
[73]
Vaandrager, A.B.; van der Wiel, E.; Hom, M.L.; Luthjens, L.H.; de Jonge, H.R. Heat-Stable Enterotoxin Receptor/Guanylyl Cyclase C Is an Oligomer Consisting of Functionally Distinct Subunits, which Are Non-Covalently Linked in the Intestine. J. Biol. Chem.?1994, 269, 16409–16415.
[74]
Vijayachandra, K.; Guruprasad, M.; Bhandari, R.; Manjunath, U.H.; Somesh, B.P.; Srinivasan, N.; Suguna, K.; Visweswariah, S.S. Biochemical Characterization of the Intracellular Domain of the Human Guanylyl Cyclase C Receptor Provides Evidence for a Catalytically Active Homotrimer. Biochemistry?2000, 39, 16075–16083.
[75]
He, X.; Chow, D.; Martick, M.M.; Garcia, K.C. Allosteric Activation of a Spring-Loaded Natriuretic Peptide Receptor Dimer by Hormone. Science?2001, 293, 1657–1662.
[76]
Ostedgaard, L.S.; Baldursson, O.; Welsh, M.J. Regulation of the Cystic Fibrosis Transmembrane Conductance Regulator Cl? Channel by Its R Domain. J. Biol. Chem.?2001, 276, 7689–7692.
[77]
Vaandrager, A.B.; Tilly, B.C.; Smolenski, A.; Schneider-Rasp, S.; Bot, A.G.; Edixhoven, M.; Scholte, B.J.; Jarchau, T.; Walter, U.; Lohmann, S.M.; Poller, W.C.; de Jonge, H.R. CGMP Stimulation of Cystic Fibrosis Transmembrane Conductance Regulator Cl? Channels Co-Expressed with cGMP-Dependent Protein Kinase Type II but Not Type Ibeta. J. Biol. Chem.?1997, 272, 4195–4200.
[78]
Vaandrager, A.B.; Smolenski, A.; Tilly, B.C.; Houtsmuller, A.B.; Ehlert, E.M.; Bot, A.G.; Edixhoven, M.; Boomaars, W.E.; Lohmann, S.M.; de Jonge, H.R. Membrane Targeting of cGMP-Dependent Protein Kinase Is Required for Cystic Fibrosis Transmembrane Conductance Regulator Cl? Channel Activation. Proc. Natl. Acad. Sci. USA?1998, 95, 1466–1471.
[79]
Chao, A.C.; de Sauvage, F.J.; Dong, Y.J.; Wagner, J.A.; Goeddel, D.V.; Gardner, P. Activation of Intestinal CFTR Cl? Channel by Heat-Stable Enterotoxin and Guanylin via cAMP-Dependent Protein Kinase. EMBO J.?1994, 13, 1065–1072.
[80]
Tousson, A.; Fuller, C.M.; Benos, D.J. Apical Recruitment of CFTR in T-84 Cells Is Dependent on cAMP and Microtubules but Not Ca2+ or Microfilaments. J. Cell Sci.?1996, 109, 1325–1334.
[81]
Kleizen, B.; Braakman, I.; de Jonge, H.R. Regulated Trafficking of the CFTR Chloride Channel. Eur. J. Cell Biol.?2000, 79, 544–556.
[82]
Golin-Bisello, F.; Bradbury, N.; Ameen, N. STa and cGMP Stimulate CFTR Translocation to the Surface of Villus Enterocytes in Rat Jejunum and Is Regulated by Protein Kinase G. Am. J. Physiol. Cell Physiol.?2005, 289, C708–C716.
[83]
He, P.; Yun, C.C. Mechanisms of the Regulation of the Intestinal Na+/H+ Exchanger NHE3. J. Biomed. Biotechnol.?2010.
[84]
Lucas, M.L.; Thom, M.M.; Bradley, J.M.; O'Reilly, N.F.; McIlvenny, T.J.; Nelson, Y.B. Escherichia coli Heat Stable (STa) Enterotoxin and the Upper Small Intestine: Lack of Evidence in Vivo for Net Fluid Secretion. J. Membr. Biol.?2005, 206, 29–42.
[85]
Lucas, M.L. A Reconsideration of the Evidence for Escherichia coli STa (Heat Stable) Enterotoxin-Driven Fluid Secretion: A New View of STa Action and a New Paradigm for Fluid Absorption. J. Appl. Microbiol.?2001, 90, 7–26.
[86]
Bryant, A.P.; Busby, R.W.; Bartolini, W.P.; Cordero, E.A.; Hannig, G.; Kessler, M.M.; Pierce, C.M.; Solinga, R.M.; Tobin, J.V.; Mahajan-Miklos, S.; et al. Linaclotide Is a Potent and Selective Guanylate Cyclase C Agonist that Elicits Pharmacological Effects Locally in the Gastrointestinal Tract. Life Sci.?2010, 86, 760–765.
[87]
Eutamene, H.; Bradesi, S.; Larauche, M.; Theodorou, V.; Beaufrand, C.; Ohning, G.; Fioramonti, J.; Cohen, M.; Bryant, A.P.; Kurtz, C.; et al. Guanylate Cyclase C-Mediated Antinociceptive Effects of Linaclotide in Rodent Models of Visceral Pain. Neurogastroenterol. Motil.?2010, 22, 312–e84.
Sellers, Z.M.; Mann, E.; Smith, A.; Ko, K.H.; Giannella, R.; Cohen, M.B.; Barrett, K.E.; Dong, H. Heat-Stable Enterotoxin of Escherichia coli (STa) Can Stimulate Duodenal HCO3(-) Secretion via a Novel GC-C- and CFTR-Independent Pathway. FASEB J.?2008, 22, 1306–1316.
[90]
Hugues, M.; Crane, M.; Hakki, S.; O'Hanley, P.; Waldman, S.A. Identification and Characterization of a New Family of High-Affinity Receptors for Escherichia coli Heat-Stable Enterotoxin in Rat Intestinal Membranes. Biochemistry?1991, 30, 10738–10745.
[91]
Hakki, S.; Robertson, D.C.; Waldman, S.A. A 56 kDa Binding Protein for Escherichia coli Heat-Stable Enterotoxin Isolated from the Cytoskeleton of Rat Intestinal Membrane Does Not Possess Guanylate Cyclase Activity. Biochim. Biophys. Acta?1993, 1152, 1–8.
[92]
Mann, E.A.; Jump, M.L.; Wu, J.; Yee, E.; Giannella, R.A. Mice Lacking the Guanylyl Cyclase C Receptor Are Resistant to STa-Induced Intestinal Secretion. Biochem. Biophys. Res. Commun.?1997, 239, 463–466.
[93]
Schulz, S.; Lopez, M.J.; Kuhn, M.; Garbers, D.L. Disruption of the Guanylyl Cyclase-C Gene Leads to a Paradoxical Phenotype of Viable but Heat-Stable Enterotoxin-Resistant Mice. J. Clin. Invest.?1997, 100, 1590–1595.
[94]
Sindice, A.; Basoglu, C.; Cerci, A.; Hirsch, J.R.; Potthast, R.; Kuhn, M.; Ghanekar, Y.; Visweswariah, S.S.; Schlatter, E. Guanylin, Uroguanylin, and Heat-Stable Euterotoxin Activate Guanylate Cyclase C and/or a Pertussis Toxin-Sensitive G Protein in Human Proximal Tubule Cells. J. Biol. Chem.?2002, 277, 17758–17764.
[95]
Carrithers, S.L.; Ott, C.E.; Hill, M.J.; Johnson, B.R.; Cai, W.; Chang, J.J.; Shah, R.G.; Sun, C.; Mann, E.A.; Fonteles, M.C.; et al. Guanylin and Uroguanylin Induce Natriuresis in Mice Lacking Guanylyl Cyclase-C Receptor. Kidney Int.?2004, 65, 40–53.
[96]
Steinbrecher, K.A.; Tuohy, T.M.; Goss, K.H.; Scott, M.C.; Witte, D.P.; Groden, J.; Cohen, M.B. Expression of Guanylin Is Downregulated in Mouse and Human Intestinal Adenomas. Biochem. Biophys. Res. Commun.?2000, 273, 225–230.
[97]
Carrithers, S.L.; Parkinson, S.J.; Goldstein, S.; Park, P.; Robertson, D.C.; Waldman, S.A. Escherichia coli Heat-Stable Toxin Receptors in Human Colonic Tumors. Gastroenterology?1994, 107, 1653–1661.
[98]
Carrithers, S.L.; Barber, M.T.; Biswas, S.; Parkinson, S.J.; Park, P.K.; Goldstein, S.D.; Waldman, S.A. Guanylyl Cyclase C Is a Selective Marker for Metastatic Colorectal Tumors in Human Extraintestinal Tissues. Proc. Natl. Acad. Sci. USA?1996, 93, 14827–14832.
[99]
Schulz, S.; Hyslop, T.; Haaf, J.; Bonaccorso, C.; Nielsen, K.; Witek, M.E.; Birbe, R.; Palazzo, J.; Weinberg, D.; Waldman, S.A. A Validated Quantitative Assay to Detect Occult Micrometastases by Reverse Transcriptase-Polymerase Chain Reaction of Guanylyl Cyclase C in Patients with Colorectal Cancer. Clin. Cancer Res.?2006, 12, 4545–4552.
[100]
Waldman, S.A.; Hyslop, T.; Schulz, S.; Barkun, A.; Nielsen, K.; Haaf, J.; Bonaccorso, C.; Li, Y.; Weinberg, D.S. Association of GUCY2C Expression in Lymph Nodes with Time to Recurrence and Disease-Free Survival in pN0 Colorectal Cancer. JAMA?2009, 301, 745–752.
[101]
Snook, A.E.; Stafford, B.J.; Li, P.; Tan, G.; Huang, L.; Birbe, R.; Schulz, S.; Schnell, M.J.; Thakur, M.; Rothstein, J.L.; et al. Guanylyl Cyclase C-Induced Immunotherapeutic Responses Opposing Tumor Metastases without Autoimmunity. J. Natl. Cancer Inst.?2008, 100, 950–961.
[102]
Wolfe, H.R.; Mendizabal, M.; Lleong, E.; Cuthbertson, A.; Desai, V.; Pullan, S.; Fujii, D.K.; Morrison, M.; Pither, R.; Waldman, S.A. In Vivo Imaging of Human Colon Cancer Xenografts in Immunodeficient Mice using a Guanylyl Cyclase C—Specific Ligand. J. Nucl. Med.?2002, 43, 392–399.
[103]
Giblin, M.F.; Gali, H.; Sieckman, G.L.; Owen, N.K.; Hoffman, T.J.; Forte, L.R.; Volkert, W.A. In Vitro and in Vivo Comparison of Human Escherichia coli Heat-Stable Peptide Analogues Incorporating the 111In-DOTA Group and Distinct Linker Moieties. Bioconjug. Chem.?2004, 15, 872–880.
[104]
Giblin, M.F.; Sieckman, G.L.; Watkinson, L.D.; Daibes-Figueroa, S.; Hoffman, T.J.; Forte, L.R.; Volkert, W.A. Selective Targeting of E. coli Heat-Stable Enterotoxin Analogs to Human Colon Cancer Cells. Anticancer Res.?2006, 26, 3243–3251. 17094436
[105]
Giblin, M.F.; Sieckman, G.L.; Shelton, T.D.; Hoffman, T.J.; Forte, L.R.; Volkert, W.A. In Vitro and in Vivo Evaluation of 177Lu- and 90Y-Labeled E. coli Heat-Stable Enterotoxin for Specific Targeting of Uroguanylin Receptors on Human Colon Cancers. Nucl. Med. Biol.?2006, 33, 481–488, doi:10.1016/j.nucmedbio.2006.01.009. 16720239
[106]
Giblin, M.F.; Gali, H.; Sieckman, G.L.; Owen, N.K.; Hoffman, T.J.; Volkert, W.A.; Forte, L.R. In Vitro and in Vivo Evaluation of 111In-Labeled E. coli Heat-Stable Enterotoxin Analogs for Specific Targeting of Human Breast Cancers. Breast Cancer Res. Treat.?2006, 98, 7–15, doi:10.1007/s10549-005-9040-8. 16724166
[107]
Tian, X.; Michal, A.M.; Li, P.; Wolfe, H.R.; Waldman, S.A.; Wickstrom, E. STa Peptide Analogs for Probing Guanylyl Cyclase C. Biopolymers?2008, 90, 713–723.
[108]
Liu, D.; Overbey, D.; Watkinson, L.D.; Daibes-Figueroa, S.; Hoffman, T.J.; Forte, L.R.; Volkert, W.A.; Giblin, M.F. In Vivo Imaging of Human Colorectal Cancer using Radiolabeled Analogs of the Uroguanylin Peptide Hormone. Anticancer Res.?2009, 29, 3777–3783.
[109]
Urbanski, R.; Carrithers, S.L.; Waldman, S.A. Internalization of E. coli ST Mediated by Guanylyl Cyclase C in T84 Human Colon Carcinoma Cells. Biochim. Biophys. Acta?1995, 1245, 29–36.
[110]
Pitari, G.M.; Zingman, L.V.; Hodgson, D.M.; Alekseev, A.E.; Kazerounian, S.; Bienengraeber, M.; Hajnoczky, G.; Terzic, A.; Waldman, S.A. Bacterial Enterotoxins Are Associated with Resistance to Colon Cancer. Proc. Natl. Acad. Sci. USA?2003, 100, 2695–2699.
[111]
Parkin, D.M.; Bray, F.; Ferlay, J.; Pisani, P. Global Cancer Statistics, 2002. CA Cancer J. Clin.?2005, 55, 74–108.
[112]
Pitari, G.M.; Di Guglielmo, M.D.; Park, J.; Schulz, S.; Waldman, S.A. Guanylyl Cyclase C Agonists Regulate Progression through the Cell Cycle of Human Colon Carcinoma Cells. Proc. Natl. Acad. Sci. USA?2001, 98, 7846–7851.
Li, P.; Lin, J.E.; Snook, A.E.; Gibbons, A.V.; Zuzga, D.S.; Schulz, S.; Pitari, G.M.; Waldman, S.A. Colorectal Cancer Is a Paracrine Deficiency Syndrome Amenable to Oral Hormone Replacement Therapy. Clin. Transl. Sci.?2008, 1, 163–167.
[115]
Birbe, R.; Palazzo, J.P.; Walters, R.; Weinberg, D.; Schulz, S.; Waldman, S.A. Guanylyl Cyclase C Is a Marker of Intestinal Metaplasia, Dysplasia, and Adenocarcinoma of the Gastrointestinal Tract. Hum. Pathol.?2005, 36, 170–179.
[116]
Witek, M.E.; Nielsen, K.; Walters, R.; Hyslop, T.; Palazzo, J.; Schulz, S.; Waldman, S.A. The Putative Tumor Suppressor Cdx2 Is Overexpressed by Human Colorectal Adenocarcinomas. Clin. Cancer Res.?2005, 11, 8549–8556.
[117]
Li, P.; Waldman, S.A. Corruption of Homeostatic Mechanisms in the Guanylyl Cyclase C Signaling Pathway Underlying Colorectal Tumorigenesis. Cancer Biol. Ther.?2010, 10, 211–218.