全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Toxins  2010 

Clostridial Neurotoxins: Mechanism of SNARE Cleavage and Outlook on Potential Substrate Specificity Reengineering

DOI: 10.3390/toxins2040665

Keywords: botulinum neurotoxin, tetanus toxin, SNARE, zinc protease, enzyme engineering

Full-Text   Cite this paper   Add to My Lib

Abstract:

The clostridial neurotoxin family consists of tetanus neurotoxin and seven distinct botulinum neurotoxins which cause the diseases tetanus and botulism. The extreme potency of these toxins primarily relies not only on their ability to specifically enter motoneurons but also on the activity their catalytic domains display inside presynaptic motoneuronal terminals. Subsequent to neurotoxin binding and endocytosis the catalytic domains become translocated across endosomal membranes and proteolyze unique peptide bonds of one of three soluble N-ethylmaleimide-sensitive fusion protein attachment receptors (SNAREs), vesicle associated membrane protein/synaptobrevin, synaptosome associated protein of 25 kDa, or syntaxin. As these substrate proteins are core components of the vesicular membrane fusion apparatus, cleavage of any of the substrate molecules results in the blockade of neurotransmitter release. This review summarizes the present knowledge about the molecular basis of the specific substrate recognition and cleavage mechanism and assesses the feasibility of reengineering catalytic domains to hydrolyze non-substrate members of the three SNARE families in order to expand the therapeutic application of botulinum neurotoxins.

References

Gln reveals the pivotal role of the Glu212 carboxylate in the catalytic pathway. Biochemistry?2004, 43, 6637–6644, doi:10.1021/bi036278w. 15157097
-->
[1]  Dolly, J.O.; Black, J.; Williams, R.S.; Melling, J. Acceptors for botulinum neurotoxin reside on motor nerve terminals and mediate its internalization. Nature?1984, 307, 457–460, doi:10.1038/307457a0. 6694738
[2]  Dong, M.; Richards, D.A.; Goodnough, M.C.; Tepp, W.H.; Johnson, E.A.; Chapman, E.R. Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells. J. Cell Biol.?2003, 162, 1293–1303, doi:10.1083/jcb.200305098. 14504267
[3]  Dong, M.; Tepp, W.H.; Liu, H.; Johnson, E.A.; Chapman, E.R. Mechanism of botulinum neurotoxin B and G entry into hippocampal neurons. J. Cell Biol.?2007, 179, 1511–1522, doi:10.1083/jcb.200707184. 18158333
[4]  Nishiki, T.; Kamata, Y.; Nemoto, Y.; Omori, A.; Ito, T.; Takahashi, M.; Kozaki, S. Identification of protein receptor for Clostridium botulinum type B neurotoxin in rat brain synaptosomes. J. Biol. Chem.?1994, 269, 10498–10503. 8144634
[5]  Rummel, A.; Karnath, T.; Henke, T.; Bigalke, H.; Binz, T. Synaptotagmins I and II act as nerve cell receptors for botulinum neurotoxin G. J. Biol. Chem.?2004, 279, 30865–30870, doi:10.1074/jbc.M403945200. 15123599
[6]  Dong, M.; Liu, H.; Tepp, W.H.; Johnson, E.A.; Janz, R.; Chapman, E.R. Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons. Mol. Biol. Cell?2008, 19, 5226–5237, doi:10.1091/mbc.E08-07-0765. 18815274
[7]  Dong, M.; Yeh, F.; Tepp, W.H.; Dean, C.; Johnson, E.A.; Janz, R.; Chapman, E.R. SV2 is the protein receptor for botulinum neurotoxin A. Science?2006, 312, 592–596, doi:10.1126/science.1123654. 16543415
[8]  Mahrhold, S.; Rummel, A.; Bigalke, H.; Davletov, B.; Binz, T. The synaptic vesicle protein 2C mediates the uptake of botulinum neurotoxin A into phrenic nerves. FEBS Lett.?2006, 580, 2011–2014, doi:10.1016/j.febslet.2006.02.074. 16545378
[9]  Fu, Z.; Chen, C.; Barbieri, J.T.; Kim, J.J.; Baldwin, M.R. Glycosylated SV2 and gangliosides as dual receptors for botulinum neurotoxin serotype F. Biochemistry?2009, 48, 5631–5641, doi:10.1021/bi9002138. 19476346
[10]  Rummel, A.; Hafner, K.; Mahrhold, S.; Darashchonak, N.; Holt, M.; Jahn, R.; Beermann, S.; Karnath, T.; Bigalke, H.; Binz, T. Botulinum neurotoxins C, E and F bind gangliosides via a conserved binding site prior to stimulation-dependent uptake with botulinum neurotoxin F utilising the three isoforms of SV2 as second receptor. J. Neurochem.?2009, 110, 1942–1954, doi:10.1111/j.1471-4159.2009.06298.x. 19650874
[11]  Muraro, L.; Tosatto, S.; Motterlini, L.; Rossetto, O.; Montecucco, C. The N-terminal half of the receptor domain of botulinum neurotoxin A binds to microdomains of the plasma membrane. Biochem. Biophys. Res. Commun.?2009, 380, 76–80, doi:10.1016/j.bbrc.2009.01.037. 19161982
[12]  Fischer, A.; Montal, M. Single molecule detection of intermediates during botulinum neurotoxin translocation across membranes. Proc. Natl. Acad. Sci. USA?2007, 104, 10447–10452, doi:10.1073/pnas.0700046104. 17563359
[13]  Koriazova, L.K.; Montal, M. Translocation of botulinum neurotoxin light chain protease through the heavy chain channel. Nat. Struct. Biol.?2003, 10, 13–18, doi:10.1038/nsb879. 12459720
[14]  Schiavo, G.; Matteoli, M.; Montecucco, C. Neurotoxins affecting neuroexocytosis. Physiol. Rev.?2000, 80, 717–766. 10747206
[15]  Gill, D.M. Bacterial toxins: a table of lethal amounts. Microbiol. Rev.?1982, 46, 86–94. 6806598
[16]  Arnon, S.S.; Schechter, R.; Inglesby, T.V.; Henderson, D.A.; Bartlett, J.G.; Ascher, M.S.; Eitzen, E.; Fine, A.D.; Hauer, J.; Layton, M.; Lillibridge, S.; Osterholm, M.T.; O'Toole, T.; Parker, G.; Perl, T.M.; Russell, P.K.; Swerdlow, D.L.; Tonat, K. Botulinum toxin as a biological weapon: Medical and public health management. Jama?2001, 285, 1059–1070, doi:10.1001/jama.285.8.1059. 11209178
[17]  Bigalke, H.; Rummel, A. Medical aspects of toxin weapons. Toxicology?2005, 214, 210–220, doi:10.1016/j.tox.2005.06.015. 16087285
[18]  Davletov, B.; Bajohrs, M.; Binz, T. Beyond BOTOX: Advantages and limitations of individual botulinum neurotoxins. Trends Neurosci.?2005, 28, 446–452, doi:10.1016/j.tins.2005.06.001. 15979165
[19]  Jongeneel, C.V.; Bouvier, J.; Bairoch, A. A unique signature identifies a family of zinc-dependent metallopeptidases. FEBS Lett.?1989, 242, 211–214, doi:10.1016/0014-5793(89)80471-5. 2914602
[20]  Binz, T.; Kurazono, H.; Wille, M.; Frevert, J.; Wernars, K.; Niemann, H. The complete sequence of botulinum neurotoxin type A and comparison with other clostridial neurotoxins. J. Biol. Chem.?1990, 265, 9153–9158. 2160960
[21]  Thompson, D.E.; Brehm, J.K.; Oultram, J.D.; Swinfield, T.J.; Shone, C.C.; Atkinson, T.; Melling, J.; Minton, N.P. The complete amino acid sequence of the Clostridium botulinum type A neurotoxin, deduced by nucleotide sequence analysis of the encoding gene. Eur. J. Biochem.?1990, 189, 73–81, doi:10.1111/j.1432-1033.1990.tb15461.x. 2185020
[22]  Schiavo, G.; Rossetto, O.; Santucci, A.; DasGupta, B.R.; Montecucco, C. Botulinum neurotoxins are zinc proteins. J. Biol. Chem.?1992, 267, 23479–23483. 1429690
[23]  Schiavo, G.; Poulain, B.; Rossetto, O.; Benfenati, F.; Tauc, L.; Montecucco, C. Tetanus toxin is a zinc protein and its inhibition of neurotransmitter release and protease activity depend on zinc. EMBO J.?1992, 11, 3577–3583. 1396558
[24]  Baumert, M.; Maycox, P.R.; Navone, F.; De Camilli, P.; Jahn, R. Synaptobrevin: an integral membrane protein of 18,000 daltons present in small synaptic vesicles of rat brain. EMBO J.?1989, 8, 379–384. 2498078
[25]  Schiavo, G.; Benfenati, F.; Poulain, B.; Rossetto, O.; Polverino de Laureto, P.; DasGupta, B.R.; Montecucco, C. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature?1992, 359, 832–835, doi:10.1038/359832a0. 1331807
[26]  Trimble, W.S.; Cowan, D.M.; Scheller, R.H. VAMP-1: A synaptic vesicle-associated integral membrane protein. Proc. Natl. Acad. Sci. USA?1988, 85, 4538–4542, doi:10.1073/pnas.85.12.4538. 3380805
[27]  Schiavo, G.; Rossetto, O.; Catsicas, S.; Polverino de Laureto, P.; DasGupta, B.R.; Benfenati, F.; Montecucco, C. Identification of the nerve terminal targets of botulinum neurotoxin serotypes A, D, and E. J. Biol. Chem.?1993, 268, 23784–23787. 8226912
[28]  Schiavo, G.; Shone, C.C.; Rossetto, O.; Alexander, F.C.; Montecucco, C. Botulinum neurotoxin serotype F is a zinc endopeptidase specific for VAMP/synaptobrevin. J. Biol. Chem.?1993, 268, 11516–11519. 8505288
[29]  Yamasaki, S.; Binz, T.; Hayashi, T.; Szabo, E.; Yamasaki, N.; Eklund, M.; Jahn, R.; Niemann, H. Botulinum neurotoxin type G proteolyses the Ala81-Ala82 bond of rat synaptobrevin 2. Biochem. Biophys. Res. Commun.?1994, 200, 829–835, doi:10.1006/bbrc.1994.1526. 7910017
[30]  Blasi, J.; Chapman, E.R.; Link, E.; Binz, T.; Yamasaki, S.; De Camilli, P.; Sudhof, T.C.; Niemann, H.; Jahn, R. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature?1993, 365, 160–163, doi:10.1038/365160a0. 8103915
[31]  Foran, P.; Lawrence, G.W.; Shone, C.C.; Foster, K.A.; Dolly, J.O. Botulinum neurotoxin C1 cleaves both syntaxin and SNAP-25 in intact and permeabilized chromaffin cells: correlation with its blockade of catecholamine release. Biochemistry?1996, 35, 2630–2636, doi:10.1021/bi9519009. 8611567
[32]  Osen-Sand, A.; Staple, J.K.; Naldi, E.; Schiavo, G.; Rossetto, O.; Petitpierre, S.; Malgaroli, A.; Montecucco, C.; Catsicas, S. Common and distinct fusion proteins in axonal growth and transmitter release. J. Comp. Neurol.?1996, 367, 222–234, doi:10.1002/(SICI)1096-9861(19960401)367:2<222::AID-CNE5>3.0.CO;2-7. 8708006
[33]  Williamson, L.C.; Halpern, J.L.; Montecucco, C.; Brown, J.E.; Neale, E.A. Clostridial neurotoxins and substrate proteolysis in intact neurons: botulinum neurotoxin C acts on synaptosomal-associated protein of 25 kDa. J. Biol. Chem.?1996, 271, 7694–7699, doi:10.1074/jbc.271.13.7694. 8631808
[34]  Binz, T.; Blasi, J.; Yamasaki, S.; Baumeister, A.; Link, E.; Sudhof, T.C.; Jahn, R.; Niemann, H. Proteolysis of SNAP-25 by types E and A botulinal neurotoxins. J. Biol. Chem.?1994, 269, 1617–1620. 8294407
[35]  Schiavo, G.; Santucci, A.; Dasgupta, B.R.; Mehta, P.P.; Jontes, J.; Benfenati, F.; Wilson, M.C.; Montecucco, C. Botulinum neurotoxins serotypes A and E cleave SNAP-25 at distinct COOH-terminal peptide bonds. FEBS Lett.?1993, 335, 99–103, doi:10.1016/0014-5793(93)80448-4. 8243676
[36]  Vaidyanathan, V.V.; Yoshino, K.; Jahnz, M.; Dorries, C.; Bade, S.; Nauenburg, S.; Niemann, H.; Binz, T. Proteolysis of SNAP-25 isoforms by botulinum neurotoxin types A, C, and E: Domains and amino acid residues controlling the formation of enzyme-substrate complexes and cleavage. J. Neurochem.?1999, 72, 327–337. 9886085
[37]  Blasi, J.; Chapman, E.R.; Yamasaki, S.; Binz, T.; Niemann, H.; Jahn, R. Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC-1/syntaxin. EMBO J.?1993, 12, 4821–4828. 7901002
[38]  Bennett, M.K.; Calakos, N.; Scheller, R.H. Syntaxin: A synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science?1992, 257, 255–259, doi:10.1126/science.1321498. 1321498
[39]  Inoue, A.; Obata, K.; Akagawa, K. Cloning and sequence analysis of cDNA for a neuronal cell membrane antigen, HPC-1. J. Biol. Chem.?1992, 267, 10613–10619. 1587842
[40]  Schiavo, G.; Shone, C.C.; Bennett, M.K.; Scheller, R.H.; Montecucco, C. Botulinum neurotoxin type C cleaves a single Lys-Ala bond within the carboxyl-terminal region of syntaxins. J. Biol. Chem.?1995, 270, 10566–10570, doi:10.1074/jbc.270.18.10566. 7737992
[41]  Sutton, R.B.; Fasshauer, D.; Jahn, R.; Brunger, A.T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2. 4 A resolution. Nature?1998, 395, 347–353, doi:10.1038/26412. 9759724
[42]  Jahn, R.; Scheller, R.H. SNAREs--engines for membrane fusion. Nat. Rev. Mol. Cell Biol.?2006, 7, 631–643, doi:10.1038/nrm2002. 16912714
[43]  Humeau, Y.; Doussau, F.; Grant, N.J.; Poulain, B. How botulinum and tetanus neurotoxins block neurotransmitter release. Biochimie?2000, 82, 427–446, doi:10.1016/S0300-9084(00)00216-9. 10865130
[44]  Sikorra, S.; Henke, T.; Galli, T.; Binz, T. Substrate recognition mechanism of VAMP/synaptobrevin-cleaving clostridial neurotoxins. J. Biol. Chem.?2008, 283, 21145–21152, doi:10.1074/jbc.M800610200. 18511418
[45]  Sikorra, S.; Henke, T.; Swaminathan, S.; Galli, T.; Binz, T. Identification of the amino acid residues rendering TI-VAMP insensitive toward botulinum neurotoxin B. J. Mol. Biol.?2006, 357, 574–582, doi:10.1016/j.jmb.2005.12.075. 16430921
[46]  Hooper, N.M. Families of zinc metalloproteases. FEBS Lett.?1994, 354, 1–6, doi:10.1016/0014-5793(94)01079-X. 7957888
[47]  Rawlings, N.D.; Barrett, A.J. Evolutionary families of metallopeptidases. Methods Enzymol.?1995, 248, 183–228. 7674922
[48]  Lacy, D.B.; Tepp, W.; Cohen, A.C.; DasGupta, B.R.; Stevens, R.C. Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat. Struct. Biol.?1998, 5, 898–902, doi:10.1038/2338. 9783750
[49]  Breidenbach, M.A.; Brunger, A.T. 2.3 A crystal structure of tetanus neurotoxin light chain. Biochemistry?2005, 44, 7450–7457, doi:10.1021/bi050262j. 15895988
[50]  Breidenbach, M.A.; Brunger, A.T. Substrate recognition strategy for botulinum neurotoxin serotype A. Nature?2004, 432, 925–929, doi:10.1038/nature03123. 15592454
[51]  Hangauer, D.G.; Monzingo, A.F.; Matthews, B.W. An interactive computer graphics study of thermolysin-catalyzed peptide cleavage and inhibition by N-carboxymethyl dipeptides. Biochemistry?1984, 23, 5730–5741, doi:10.1021/bi00319a011. 6525336
[52]  Matthews, B.W. Structural basis of the action of thermolysin and related zinc peptidases. Accounts Chem. Res.?1988, 21, 333–340, doi:10.1021/ar00153a003.
[53]  Li, L.; Binz, T.; Niemann, H.; Singh, B.R. Probing the mechanistic role of glutamate residue in the zinc-binding motif of type A botulinum neurotoxin light chain. Biochemistry?2000, 39, 2399–2405, doi:10.1021/bi992321x. 10694409
[54]  Agarwal, R.; Eswaramoorthy, S.; Kumaran, D.; Binz, T.; Swaminathan, S. Structural analysis of botulinum neurotoxin type E catalytic domain and its mutant Glu212-->Gln reveals the pivotal role of the Glu212 carboxylate in the catalytic pathway. Biochemistry?2004, 43, 6637–6644, doi:10.1021/bi036278w. 15157097
[55]  Agarwal, R.; Swaminathan, S. SNAP-25 substrate peptide (residues 180-183) binds to but bypasses cleavage by catalytically active Clostridium botulinum neurotoxin E. J. Biol. Chem.?2008, 283, 25944–25951, doi:10.1074/jbc.M803756200. 18658150
[56]  Kumaran, D.; Rawat, R.; Ahmed, S.A.; Swaminathan, S. Substrate binding mode and its implication on drug design for botulinum neurotoxin A. PLoS Pathogens?2008, 4, e1000165, doi:10.1371/journal.ppat.1000165. 18818739
[57]  Binz, T.; Bade, S.; Rummel, A.; Kollewe, A.; Alves, J. Arg(362) and Tyr(365) of the botulinum neurotoxin type a light chain are involved in transition state stabilization. Biochemistry?2002, 41, 1717–1723, doi:10.1021/bi0157969. 11827515
[58]  Rossetto, O.; Caccin, P.; Rigoni, M.; Tonello, F.; Bortoletto, N.; Stevens, R.C.; Montecucco, C. Active-site mutagenesis of tetanus neurotoxin implicates TYR-375 and GLU-271 in metalloproteolytic activity. Toxicon?2001, 39, 1151–1159, doi:10.1016/S0041-0101(00)00252-X. 11306125
[59]  Ahmed, S.A.; Olson, M.A.; Ludivico, M.L.; Gilsdorf, J.; Smith, L.A. Identification of residues surrounding the active site of type A botulinum neurotoxin important for substrate recognition and catalytic activity. Protein J.?2008, 27, 151–162, doi:10.1007/s10930-007-9118-8. 18213512
[60]  Silvaggi, N.R.; Wilson, D.; Tzipori, S.; Allen, K.N. Catalytic features of the botulinum neurotoxin A light chain revealed by high resolution structure of an inhibitory peptide complex. Biochemistry?2008, 47, 5736–5745, doi:10.1021/bi8001067. 18457419
[61]  Agarwal, R.; Binz, T.; Swaminathan, S. Analysis of active site residues of botulinum neurotoxin E by mutational, functional, and structural studies: Glu335Gln is an apoenzyme. Biochemistry?2005, 44, 8291–8302, doi:10.1021/bi050253a. 15938619
[62]  Jin, R.; Sikorra, S.; Stegmann, C.M.; Pich, A.; Binz, T.; Brunger, A.T. Structural and biochemical studies of botulinum neurotoxin serotype C1 light chain protease: Implications for dual substrate specificity. Biochemistry?2007, 46, 10685–10693, doi:10.1021/bi701162d. 17718519
[63]  Cornille, F.; Martin, L.; Lenoir, C.; Cussac, D.; Roques, B.P.; Fournie-Zaluski, M.C. Cooperative exosite-dependent cleavage of synaptobrevin by tetanus toxin light chain. J. Biol. Chem.?1997, 272, 3459–3464, doi:10.1074/jbc.272.6.3459. 9013591
[64]  Foran, P.; Shone, C.C.; Dolly, J.O. Differences in the protease activities of tetanus and botulinum B toxins revealed by the cleavage of vesicle-associated membrane protein and various sized fragments. Biochemistry?1994, 33, 15365–15374, doi:10.1021/bi00255a017. 7803399
[65]  Schmidt, J.J.; Stafford, R.G. Botulinum neurotoxin serotype F: identification of substrate recognition requirements and development of inhibitors with low nanomolar affinity. Biochemistry?2005, 44, 4067–4073, doi:10.1021/bi0477642. 15751983
[66]  Shone, C.C.; Quinn, C.P.; Wait, R.; Hallis, B.; Fooks, S.G.; Hambleton, P. Proteolytic cleavage of synthetic fragments of vesicle-associated membrane protein, isoform-2 by botulinum type B neurotoxin. Eur. J. Biochem.?1993, 217, 965–971, doi:10.1111/j.1432-1033.1993.tb18327.x. 8223654
[67]  Yamasaki, S.; Baumeister, A.; Binz, T.; Blasi, J.; Link, E.; Cornille, F.; Roques, B.; Fykse, E.M.; Sudhof, T.C.; Jahn, R.; et al. Cleavage of members of the synaptobrevin/VAMP family by types D and F botulinal neurotoxins and tetanus toxin. J. Biol. Chem.?1994, 269, 12764–12772. 8175689
[68]  Washbourne, P.; Pellizzari, R.; Baldini, G.; Wilson, M.C.; Montecucco, C. Botulinum neurotoxin types A and E require the SNARE motif in SNAP-25 for proteolysis. FEBS Lett.?1997, 418, 1–5, doi:10.1016/S0014-5793(97)01328-8. 9414082
[69]  Pellizzari, R.; Rossetto, O.; Lozzi, L.; Giovedi, S.; Johnson, E.; Shone, C.C.; Montecucco, C. Structural determinants of the specificity for synaptic vesicle-associated membrane protein/synaptobrevin of tetanus and botulinum type B and G neurotoxins. J. Biol. Chem.?1996, 271, 20353–20358, doi:10.1074/jbc.271.34.20353. 8702770
[70]  Pellizzari, R.; Mason, S.; Shone, C.C.; Montecucco, C. The interaction of synaptic vesicle-associated membrane protein/synaptobrevin with botulinum neurotoxins D and F. FEBS Lett.?1997, 409, 339–342, doi:10.1016/S0014-5793(97)00482-1. 9224685
[71]  Evans, E.R.; Sutton, J.M.; Gravett, A.; Shone, C.C. Analysis of the substrate recognition domain determinants of Botulinum Type B toxin using Phage display. Toxicon?2005, 46, 446–453, doi:10.1016/j.toxicon.2005.06.006. 16112699
[72]  Wictome, M.; Rossetto, O.; Montecucco, C.; Shone, C.C. Substrate residues N-terminal to the cleavage site of botulinum type B neurotoxin play a role in determining the specificity of its endopeptidase activity. FEBS Lett.?1996, 386, 133–136, doi:10.1016/0014-5793(96)00431-0. 8647267
[73]  Chen, S.; Barbieri, J.T. Unique substrate recognition by botulinum neurotoxins serotypes A and E. J. Biol. Chem.?2006, 281, 10906–10911, doi:10.1074/jbc.M513032200. 16478727
[74]  Fu, Z.; Chen, S.; Baldwin, M.R.; Boldt, G.E.; Crawford, A.; Janda, K.D.; Barbieri, J.T.; Kim, J.J. Light chain of botulinum neurotoxin serotype A: Structural resolution of a catalytic intermediate. Biochemistry?2006, 45, 8903–8911, doi:10.1021/bi060786z. 16846233
[75]  Silvaggi, N.R.; Boldt, G.E.; Hixon, M.S.; Kennedy, J.P.; Tzipori, S.; Janda, K.D.; Allen, K.N. Structures of clostridium botulinum neurotoxin serotype a light chain complexed with small-molecule inhibitors highlight active-site flexibility. Chem. Biol.?2007, 14, 533–542, doi:10.1016/j.chembiol.2007.03.014. 17524984
[76]  Burnett, J.C.; Ruthel, G.; Stegmann, C.M.; Panchal, R.G.; Nguyen, T.L.; Hermone, A.R.; Stafford, R.G.; Lane, D.J.; Kenny, T.A.; McGrath, C.F.; Wipf, P.; Stahl, A.M.; Schmidt, J.J.; Gussio, R.; Brunger, A.T.; Bavari, S. Inhibition of metalloprotease botulinum serotype A from a pseudo-peptide binding mode to a small molecule that is active in primary neurons. J. Biol. Chem.?2007, 282, 5004–5014. 17092934
[77]  Kumaran, D.; Rawat, R.; Ludivico, M.L.; Ahmed, S.A.; Swaminathan, S. Structure- and substrate-based inhibitor design for Clostridium botulinum neurotoxin serotype A. J. Biol. Chem.?2008, 283, 18883–18891, doi:10.1074/jbc.M801240200. 18434312
[78]  Zuniga, J.E.; Schmidt, J.J.; Fenn, T.; Burnett, J.C.; Arac, D.; Gussio, R.; Stafford, R.G.; Badie, S.S.; Bavari, S.; Brunger, A.T. A potent peptidomimetic inhibitor of botulinum neurotoxin serotype A has a very different conformation than SNAP-25 substrate. Structure?2008, 16, 1588–1597, doi:10.1016/j.str.2008.07.011. 18940613
[79]  Chen, S.; Kim, J.J.; Barbieri, J.T. Mechanism of substrate recognition by botulinum neurotoxin serotype A. J. Biol. Chem.?2007, 282, 9621–9627, doi:10.1074/jbc.M611211200. 17244603
[80]  Chen, S.; Barbieri, J.T. Multi-pocket recognition of SNAP25 by botulinum neurotoxin serotype E. J. Biol. Chem.?2007, 282, 25540–25547, doi:10.1074/jbc.M701922200. 17609207
[81]  Agarwal, R.; Schmidt, J.J.; Stafford, R.G.; Swaminathan, S. Mode of VAMP substrate recognition and inhibition of Clostridium botulinum neurotoxin F. Nat. Struct. Mol. Biol.?2009, 16, 789–794, doi:10.1038/nsmb.1626. 19543288
[82]  Chaddock, J.A.; Purkiss, J.R.; Alexander, F.C.; Doward, S.; Fooks, S.J.; Friis, L.M.; Hall, Y.H.; Kirby, E.R.; Leeds, N.; Moulsdale, H.J.; Dickenson, A.; Green, G.M.; Rahman, W.; Suzuki, R.; Duggan, M.J.; Quinn, C.P.; Shone, C.C.; Foster, K.A. Retargeted clostridial endopeptidases: Inhibition of nociceptive neurotransmitter release in vitro, and antinociceptive activity in in vivo models of pain. Mov. Disord.?2004, 19, S42–S47, doi:10.1002/mds.20008. 15027053
[83]  Duggan, M.J.; Quinn, C.P.; Chaddock, J.A.; Purkiss, J.R.; Alexander, F.C.; Doward, S.; Fooks, S.J.; Friis, L.M.; Hall, Y.H.; Kirby, E.R.; Leeds, N.; Moulsdale, H.J.; Dickenson, A.; Green, G.M.; Rahman, W.; Suzuki, R.; Shone, C.C.; Foster, K.A. Inhibition of release of neurotransmitters from rat dorsal root ganglia by a novel conjugate of a Clostridium botulinum toxin A endopeptidase fragment and Erythrina cristagalli lectin. J. Biol. Chem.?2002, 277, 34846–34852, doi:10.1074/jbc.M202902200. 12105193
[84]  Foster, K.A.; Adams, E.J.; Durose, L.; Cruttwell, C.J.; Marks, E.; Shone, C.C.; Chaddock, J.A.; Cox, C.L.; Heaton, C.; Sutton, J.M.; Wayne, J.; Alexander, F.C.; Rogers, D.F. Re-engineering the target specificity of Clostridial neurotoxins - a route to novel therapeutics. Neurotox. Res.?2006, 9, 101–107. 16785105
[85]  Chen, S.; Barbieri, J.T. Engineering botulinum neurotoxin to extend therapeutic intervention. Proc. Natl. Acad. Sci. USA?2009, 106, 9180–9184, doi:10.1073/pnas.0903111106. 19487672
[86]  Galli, T.; Zahraoui, A.; Vaidyanathan, V.V.; Raposo, G.; Tian, J.M.; Karin, M.; Niemann, H.; Louvard, D. A novel tetanus neurotoxin-insensitive vesicle-associated membrane protein in SNARE complexes of the apical plasma membrane of epithelial cells. Mol. Biol. Cell?1998, 9, 1437–1448. 9614185
[87]  Chaineau, M.; Danglot, L.; Galli, T. Multiple roles of the vesicular-SNARE TI-VAMP in post-Golgi and endosomal trafficking. FEBS Lett.?2009, 583, 3817–3826, doi:10.1016/j.febslet.2009.10.026. 19837067
[88]  Sellamuthu, S.; Shin, B.H.; Lee, E.S.; Rho, S.H.; Hwang, W.; Lee, Y.J.; Han, H.E.; Kim, J.I.; Park, W.J. Engineering of protease variants exhibiting altered substrate specificity. Biochem. Biophys. Res. Commun.?2008, 371, 122–126, doi:10.1016/j.bbrc.2008.04.026. 18413229
[89]  Schechter, I.; Berger, A. On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun.?1967, 27, 157–162. 6035483
[90]  Chen, S.; Hall, C.; Barbieri, J.T. Substrate recognition of VAMP-2 by botulinum neurotoxin B and tetanus neurotoxin. J. Biol. Chem.?2008, 283, 21153–21159, doi:10.1074/jbc.M800611200. 18511417
[91]  Fang, H.; Luo, W.; Henkel, J.; Barbieri, J.; Green, N. A yeast assay probes the interaction between botulinum neurotoxin serotype B and its SNARE substrate. Proc. Natl. Acad. Sci. USA?2006, 103, 6958–6963, doi:10.1073/pnas.0510816103. 16636286
[92]  Schmidt, J.J.; Bostian, K.A. Endoproteinase activity of type A botulinum neurotoxin: substrate requirements and activation by serum albumin. J. Prot. Chem.?1997, 16, 19–26, doi:10.1023/A:1026386710428.
[93]  Shone, C.C.; Roberts, A.K. Peptide substrate specificity and properties of the zinc-endopeptidase activity of botulinum type B neurotoxin. Eur. J. Biochem.?1994, 225, 263–270, doi:10.1111/j.1432-1033.1994.00263.x. 7925446

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133