Anthrax is caused by the gram-positive bacterium Bacillus anthracis. The pathogenesis of this disease is dependent on the presence of two binary toxins, edema toxin (EdTx) and lethal toxin (LeTx). LeTx, the major virulence factor contributing to anthrax, contains the effector moiety lethal factor (LF), a zinc-dependent metalloprotease specific for targeting mitogen-activated protein kinase kinases. This review will focus on the protease-specific activity and function of LF, and will include a discussion on the implications and consequences of this activity, both in terms of anthrax disease, and how this activity can be exploited to gain insight into other pathologic conditions.
References
[1]
Smith, H.; Keppie, J. bservations on experimental anthrax; demonstration of a specific lethal factor produced in vivo by Bacillus anthracis. Nature?1954, 173, 869–870, doi:10.1038/173869a0. 13165673
Singh, Y.; Leppla, S.H.; Bhatnagar, R.; Friedlander, A.M. Internalization and processing of Bacillus anthracis lethal toxin by toxin-sensitive and -resistant cells. J. Biol. Chem.?1989, 264, 11099–11102. 2500434
[4]
Stanley, J.L.; Smith, H. Purification of factor I and recognition of a third factor of the anthrax toxin. J. Gen. Microbiol.?1961, 26, 49–63. 13916257
[5]
Beall, F.A.; Taylor, M.J.; Thorne, C.B. Rapid lethal effect in rats of a third component found upon fractionating the toxin of Bacillus anthracis. J. Bacteriol.?1962, 83, 1274–1280. 13866126
[6]
Bradley, K.A.; Mogridge, J.; Mourez, M.; Collier, R.J.; Young, J.A. Identification of the cellular receptor for anthrax toxin. Nature?2001, 414, 225–229, doi:10.1038/n35101999. 11700562
[7]
Scobie, H.M.; Rainey, G.J.; Bradley, K.A.; Young, J.A. Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor. Proc. Natl. Acad. Sci. USA?2003, 100, 5170–5174, doi:10.1073/pnas.0431098100. 12700348
[8]
Moayeri, M.; Wiggins, J.F.; Leppla, S.H. Anthrax protective antigen cleavage and clearance from the blood of mice and rats. Infect. Immun.?2007, 75, 5175–5184, doi:10.1128/IAI.00719-07.
Leppla, S.H. Anthrax toxin edema factor: A bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc. Natl. Acad. Sci. USA?1982, 79, 3162–3166, doi:10.1073/pnas.79.10.3162.
[11]
Pezard, C.; Berche, P.; Mock, M. Contribution of individual toxin components to virulence of Bacillus anthracis. Infect. Immun.?1991, 59, 3472–3477. 1910002
[12]
O'Brien, J.; Friedlander, A.; Dreier, T.; Ezzell, J.; Leppla, S. Effects of anthrax toxin components on human neutrophils. Infect. Immun.?1985, 47, 306–310. 3917427
[13]
Voth, D.E.; Hamm, E.E.; Nguyen, L.G.; Tucker, A.E.; Salles, II; Ortiz-Leduc, W.; Ballard, J.D. Bacillus anthracis oedema toxin as a cause of tissue necrosis and cell type-specific cytotoxicity. Cell Microbiol.?2005, 7.
[14]
Firoved, A.M.; Miller, G.F.; Moayeri, M.; Kakkar, R.; Shen, Y.; Wiggins, J.F.; McNally, E.M.; Tang, W.J.; Leppla, S.H. Bacillus anthracis edema toxin causes extensive tissue lesions and rapid lethality in mice. Am. J. Pathol.?2005, 167, 1309–1320, doi:10.1016/S0002-9440(10)61218-7.
[15]
Moayeri, M.; Leppla, S.H. The roles of anthrax toxin in pathogenesis. Curr. Opin. Microbiol.?2004, 7, 19–24, doi:10.1016/j.mib.2003.12.001.
[16]
Sherer, K.; Li, Y.; Cui, X.; Eichacker, P.Q. Lethal and edema toxins in the pathogenesis of Bacillus anthracis septic shock: Implications for therapy. Am. J. Respir Crit. Care Med.?2007, 175, 211–221. 17095744
[17]
Tournier, J.N.; Rossi Paccani, S.; Quesnel-Hellmann, A.; Baldari, C.T. Anthrax toxins: A weapon to systematically dismantle the host immune defenses. Mol. Aspects Med.?2009, 30, 456–466, doi:10.1016/j.mam.2009.06.002.
[18]
Friedlander, A.M.; Bhatnagar, R.; Leppla, S.H.; Johnson, L.; Singh, Y. Characterization of macrophage sensitivity and resistance to anthrax lethal toxin. Infect. Immun.?1993, 61, 245–52. 8380282
[19]
Agrawal, A.; Lingappa, J.; Leppla, S.H.; Agrawal, S.; Jabbar, A.; Quinn, C.; Pulendran, B. Impairment of dendritic cells and adaptive immunity by anthrax lethal toxin. Nature?2003, 424, 329–334, doi:10.1038/nature01794. 12867985
[20]
Paccani, S.R.; Tonello, F.; Ghittoni, R.; Natale, M.; Muraro, L.; D'Elios, M.M.; Tang, W.J.; Montecucco, C.; Baldari, C.T. Anthrax toxins suppress T lymphocyte activation by disrupting antigen receptor signaling. J. Exp. Med.?2005, 201, 325–331, doi:10.1084/jem.20041557.
Mikesell, P.; Ivins, B.E.; Ristroph, J.D.; Dreier, T.M. Evidence for plasmid-mediated toxin production in Bacillus anthracis. Infect. Immun.?1983, 39, 371–376. 6401695
[27]
Tonello, F.; Montecucco, C. The anthrax lethal factor and its MAPK kinase-specific metalloprotease activity. Mol. Aspects Med.?2009, 30, 431–438, doi:10.1016/j.mam.2009.07.006.
[28]
Singh, Y.; Liang, X.; Duesbery, N.S. Pathogenesis of Bacillus anthracis: The Role of Anthrax Toxins. In Microbial Toxins: Molecular and Cellular Biology; Proft, T., Ed.; Horizon Bioscience: Norfolk, UK, 2005; pp. 285–312.
[29]
Quinn, C.P.; Singh, Y.; Klimpel, K.R.; Leppla, S.H. Functional mapping of anthrax toxin lethal factor by in-frame insertion mutagenesis. J. Biol. Chem.?1991, 266, 20124–20130. 1939073
[30]
Klimpel, K.R.; Arora, N.; Leppla, S.H. Anthrax toxin lethal factor contains a zinc metalloprotease consensus sequence which is required for lethal toxin activity. Mol. Microbiol.?1994, 13, 1093–1100, doi:10.1111/j.1365-2958.1994.tb00500.x. 7854123
[31]
Kochi, S.K.; Schiavo, G.; Mock, M.; Montecucco, C. Zinc content of the Bacillus anthracis lethal factor. FEMS Microbiol. Lett.?1994, 124, 343–348, doi:10.1111/j.1574-6968.1994.tb07306.x.
Vitale, G.; Pellizzari, R.; Recchi, C.; Napolitani, G.; Mock, M.; Montecucco, C. Anthrax lethal factor cleaves the N-terminus of MAPKKs and induces tyrosine/threonine phosphorylation of MAPKs in cultured macrophages. Biochem. Biophys. Res. Commun.?1998, 248, 706–711, doi:10.1006/bbrc.1998.9040. 9703991
[34]
Pearson, G.; Robinson, F.; Beers Gibson, T.; Xu, B.E.; Karandikar, M.; Berman, K.; Cobb, M.H. Mitogen-activated protein (MAP) kinase pathways: Regulation and physiological functions. Endocr. Rev.?2001, 22, 153–183, doi:10.1210/er.22.2.153.
[35]
Roux, P.P.; Blenis, J. ERK and p38 MAPK-activated protein kinases: A family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev.?2004, 68, 320–344, doi:10.1128/MMBR.68.2.320-344.2004.
[36]
Pellizzari, R.; Guidi-Rontani, C.; Vitale, G.; Mock, M.; Montecucco, C. Anthrax lethal factor cleaves MKK3 in macrophages and inhibits the LPS/IFNgamma-induced release of NO and TNFalpha. FEBS Lett.?1999, 462, 199–204, doi:10.1016/S0014-5793(99)01502-1.
[37]
Vitale, G.; Bernardi, L.; Napolitani, G.; Mock, M.; Montecucco, C. Susceptibility of mitogen-activated protein kinase kinase family members to proteolysis by anthrax lethal factor. Biochem. J.?2000, 352 Pt 3, 739–745. 18684107
[38]
Duesbery, N.S.; Resau, J.; Webb, C.P.; Koochekpour, S.; Koo, H.M.; Leppla, S.H.; Vande Woude, G.F. Suppression of ras-mediated transformation and inhibition of tumor growth and angiogenesis by anthrax lethal factor, a proteolytic inhibitor of multiple MEK pathways. Proc. Natl. Acad. Sci. USA?2001, 98, 4089–4094, doi:10.1073/pnas.061031898. 11259649
[39]
Tanoue, T.; Adachi, M.; Moriguchi, T.; Nishida, E. A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nat. Cell. Biol.?2000, 2, 110–116, doi:10.1038/35000065.
[40]
Bardwell, A.J.; Flatauer, L.J.; Matsukuma, K.; Thorner, J.; Bardwell, L. A conserved docking site in MEKs mediates high-affinity binding to MAP kinases and cooperates with a scaffold protein to enhance signal transmission. J. Biol. Chem.?2001, 276, 10374–10386, doi:10.1074/jbc.M010271200. 11134045
[41]
Chopra, A.P.; Boone, S.A.; Liang, X.; Duesbery, N.S. Anthrax lethal factor proteolysis and inactivation of MAPK kinase. J. Biol. Chem.?2003, 278, 9402–9406, doi:10.1074/jbc.M211262200. 12522135
[42]
Bardwell, A.J.; Abdollahi, M.; Bardwell, L. Anthrax lethal factor-cleavage products of MAPK (mitogen-activated protein kinase) kinases exhibit reduced binding to their cognate MAPKs. Biochem. J.?2004, 378, 569–577, doi:10.1042/BJ20031382.
[43]
Friedlander, A.M. Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J. Biol. Chem.?1986, 261, 7123–7126. 3711080
[44]
Banks, D.J.; Ward, S.C.; Bradley, K.A. New insights into the functions of anthrax toxin. Expert Rev. Mol. Med.?2006, 8, 1–18. 17178008
Huang, G.; Shi, L.Z.; Chi, H. Regulation of JNK and p38 MAPK in the immune system: Signal integration, propagation and termination. Cytokine?2009, 48, 161–169, doi:10.1016/j.cyto.2009.08.002.
[47]
Buscher, D.; Hipskind, R.A.; Krautwald, S.; Reimann, T.; Baccarini, M. Ras-dependent and -independent pathways target the mitogen-activated protein kinase network in macrophages. Mol. Cell Biol.?1995, 15, 466–475. 7799956
[48]
Kugler, S.; Schuller, S.; Goebel, W. Involvement of MAP-kinases and -phosphatases in uptake and intracellular replication of Listeria monocytogenes in J774 macrophage cells. FEMS Microbiol. Lett.?1997, 157, 131–136, doi:10.1016/S0378-1097(97)00465-5.
[49]
Comer, J.E.; Chopra, A.K.; Peterson, J.W.; Konig, R. Direct inhibition of T-lymphocyte activation by anthrax toxins in vivo. Infect. Immun.?2005, 73, 8275–8281, doi:10.1128/IAI.73.12.8275-8281.2005. 16299324
Yamashita, M.; Kimura, M.; Kubo, M.; Shimizu, C.; Tada, T.; Perlmutter, R.M.; Nakayama, T. T cell antigen receptor-mediated activation of the Ras/mitogen-activated protein kinase pathway controls interleukin 4 receptor function and type-2 helper T cell differentiation. Proc. Natl. Acad. Sci. USA?1999, 96, 1024–1029, doi:10.1073/pnas.96.3.1024. 9927687
[52]
Dong, C.; Davis, R.J.; Flavell, R.A. MAP kinases in the immune response. Annu. Rev. Immunol.?2002, 20, 55–72, doi:10.1146/annurev.immunol.20.091301.131133.
[53]
Rincon, M.; Davis, R.J. Regulation of the immune response by stress-activated protein kinases. Immunol. Rev.?2009, 228, 212–224, doi:10.1111/j.1600-065X.2008.00744.x.
[54]
Rincon, M.; Enslen, H.; Raingeaud, J.; Recht, M.; Zapton, T.; Su, M.S.; Penix, L.A.; Davis, R.J.; Flavell, R.A. Interferon-gamma expression by Th1 effector T cells mediated by the p38 MAP kinase signaling pathway. EMBO J.?1998, 17, 2817–2829, doi:10.1093/emboj/17.10.2817. 9582275
[55]
Dong, C.; Yang, D.D.; Wysk, M.; Whitmarsh, A.J.; Davis, R.J.; Flavell, R.A. Defective T cell differentiation in the absence of Jnk1. Science?1998, 282, 2092–2095, doi:10.1126/science.282.5396.2092. 9851932
[56]
Lu, H.T.; Yang, D.D.; Wysk, M.; Gatti, E.; Mellman, I.; Davis, R.J.; Flavell, R.A. Defective IL-12 production in mitogen-activated protein (MAP) kinase kinase 3 (Mkk3)-deficient mice. EMBO J.?1999, 18, 1845–1857, doi:10.1093/emboj/18.7.1845.
Giroux, S.; Tremblay, M.; Bernard, D.; Cardin-Girard, J.F.; Aubry, S.; Larouche, L.; Rousseau, S.; Huot, J.; Landry, J.; Jeannotte, L.; Charron, J. Embryonic death of Mek1-deficient mice reveals a role for this kinase in angiogenesis in the labyrinthine region of the placenta. Curr. Biol.?1999, 9, 369–372, doi:10.1016/S0960-9822(99)80164-X. 10209122
[61]
Hatano, N.; Mori, Y.; Oh-hora, M.; Kosugi, A.; Fujikawa, T.; Nakai, N.; Niwa, H.; Miyazaki, J.; Hamaoka, T.; Ogata, M. Essential role for ERK2 mitogen-activated protein kinase in placental development. Genes Cells?2003, 8, 847–856, doi:10.1046/j.1365-2443.2003.00680.x.
[62]
Wang, X.; Merritt, A.J.; Seyfried, J.; Guo, C.; Papadakis, E.S.; Finegan, K.G.; Kayahara, M.; Dixon, J.; Boot-Handford, R.P.; Cartwright, E.J.; Mayer, U.; Tournier, C. Targeted deletion of mek5 causes early embryonic death and defects in the extracellular signal-regulated kinase 5/myocyte enhancer factor 2 cell survival pathway. Mol. Cell Biol.?2005, 25, 336–345, doi:10.1128/MCB.25.1.336-345.2005. 15601854
Koo, H.M.; VanBrocklin, M.; McWilliams, M.J.; Leppla, S.H.; Duesbery, N.S.; Woude, G.F. Apoptosis and melanogenesis in human melanoma cells induced by anthrax lethal factor inactivation of mitogen-activated protein kinase kinase. Proc. Natl. Acad. Sci. USA?2002, 99, 3052–3057, doi:10.1073/pnas.052707699. 11867750
[65]
Reddy, K.B.; Nabha, S.M.; Atanaskova, N. Role of MAP kinase in tumor progression and invasion. Cancer Metastasis Rev.?2003, 22, 395–403, doi:10.1023/A:1023781114568.
[66]
Abi-Habib, R.J.; Singh, R.; Leppla, S.H.; Greene, J.J.; Ding, Y.; Berghuis, B.; Duesbery, N.S.; Frankel, A.E. Systemic anthrax lethal toxin therapy produces regressions of subcutaneous human melanoma tumors in athymic nude mice. Clin. Cancer Res.?2006, 12, 7437–7443, doi:10.1158/1078-0432.CCR-06-2019. 17189417
[67]
Depeille, P.; Young, J.J.; Boguslawski, E.A.; Berghuis, B.D.; Kort, E.J.; Resau, J.H.; Frankel, A.E.; Duesbery, N.S. Anthrax lethal toxin inhibits growth of and vascular endothelial growth factor release from endothelial cells expressing the human herpes virus 8 viral G protein coupled receptor. Clin. Cancer Res.?2007, 13, 5926–5934, doi:10.1158/1078-0432.CCR-07-0732. 17908989
Ugurel, S.; Rappl, G.; Tilgen, W.; Reinhold, U. Increased serum concentration of angiogenic factors in malignant melanoma patients correlates with tumor progression and survival. J. Clin. Oncol.?2001, 19, 577–583. 11208853
Bell, S.E.; Mavila, A.; Salazar, R.; Bayless, K.J.; Kanagala, S.; Maxwell, S.A.; Davis, G.E. Differential gene expression during capillary morphogenesis in 3D collagen matrices: regulated expression of genes involved in basement membrane matrix assembly, cell cycle progression, cellular differentiation and G-protein signaling. J. Cell Sci.?2001, 114, 2755–2773. 11683410
[74]
Munoz-Chapuli, R.; Quesada, A.R.; Angel Medina, M. Angiogenesis and signal transduction in endothelial cells. Cell. Mol. Life Sci.?2004, 61, 2224–2243. 15338053
[75]
Pages, G.; Berra, E.; Milanini, J.; Levy, A.P.; Pouyssegur, J. Stress-activated protein kinases (JNK and p38/HOG) are essential for vascular endothelial growth factor mRNA stability. J. Biol. Chem.?2000, 275, 26484–26491, doi:10.1074/jbc.M002104200. 10849421
[76]
Milanini, J.; Vinals, F.; Pouyssegur, J.; Pages, G. p42/p44 MAP kinase module plays a key role in the transcriptional regulation of the vascular endothelial growth factor gene in fibroblasts. J. Biol. Chem.?1998, 273, 18165–18172, doi:10.1074/jbc.273.29.18165. 9660776
[77]
Wu, L.W.; Mayo, L.D.; Dunbar, J.D.; Kessler, K.M.; Baerwald, M.R.; Jaffe, E.A.; Wang, D.; Warren, R.S.; Donner, D.B. Utilization of distinct signaling pathways by receptors for vascular endothelial cell growth factor and other mitogens in the induction of endothelial cell proliferation. J. Biol. Chem.?2000, 275, 5096–5103, doi:10.1074/jbc.275.7.5096. 10671553
[78]
D'Angelo, G.; Struman, I.; Martial, J.; Weiner, R.I. Activation of mitogen-activated protein kinases by vascular endothelial growth factor and basic fibroblast growth factor in capillary endothelial cells is inhibited by the antiangiogenic factor 16-kDa N-terminal fragment of prolactin. Proc. Natl. Acad. Sci. USA?1995, 92, 6374–6378, doi:10.1073/pnas.92.14.6374. 7541539
[79]
Rousseau, S.; Houle, F.; Landry, J.; Huot, J. p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene?1997, 15, 2169–2177, doi:10.1038/sj.onc.1201380.
[80]
Hood, J.D.; Bednarski, M.; Frausto, R.; Guccione, S.; Reisfeld, R.A.; Xiang, R.; Cheresh, D.A. Tumor regression by targeted gene delivery to the neovasculature. Science?2002, 296, 2404–2407, doi:10.1126/science.1070200. 12089446
[81]
Wilhelm, S.M.; Carter, C.; Tang, L.; Wilkie, D.; McNabola, A.; Rong, H.; Chen, C.; Zhang, X.; Vincent, P.; McHugh, M.; Cao, Y.; Shujath, J.; Gawlak, S.; Eveleigh, D.; Rowley, B.; Liu, L.; Adnane, L.; Lynch, M.; Auclair, D.; Taylor, I.; Gedrich, R.; Voznesensky, A.; Riedl, B.; Post, L.E.; Bollag, G.; Trail, P.A. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res.?2004, 64, 7099–7109, doi:10.1158/0008-5472.CAN-04-1443. 15466206
[82]
Mavria, G.; Vercoulen, Y.; Yeo, M.; Paterson, H.; Karasarides, M.; Marais, R.; Bird, D.; Marshall, C.J. ERK-MAPK signaling opposes Rho-kinase to promote endothelial cell survival and sprouting during angiogenesis. Cancer Cell?2006, 9, 33–44, doi:10.1016/j.ccr.2005.12.021.
Gariano, R.F.; Gardner, T.W. Retinal angiogenesis in development and disease. Nature?2005, 438, 960–966. 16355161
[86]
Saint-Geniez, M.; D'Amore, P.A. Development and pathology of the hyaloid, choroidal and retinal vasculature. Int. J. Dev. Biol.?2004, 48, 1045–1058, doi:10.1387/ijdb.041895ms.
[87]
Campochiaro, P.A.; Hackett, S.F. Ocular neovascularization: a valuable model system. Oncogene?2003, 22, 6537–6548, doi:10.1038/sj.onc.1206773.
[88]
Kvanta, A. Ocular angiogenesis: The role of growth factors. Acta Ophthalmol. Scand.?2006, 84, 282–288, doi:10.1111/j.1600-0420.2006.00659.x.
Hecquet, C.; Lefevre, G.; Valtink, M.; Engelmann, K.; Mascarelli, F. Activation and role of MAP kinase-dependent pathways in retinal pigment epithelial cells: ERK and RPE cell proliferation. Invest. Ophthalmol. Vis. Sci.?2002, 43, 3091–3098. 12202534
[91]
Hecquet, C.; Lefevre, G.; Valtink, M.; Engelmann, K.; Mascarelli, F. Activation and role of MAP kinase-dependent pathways in retinal pigment epithelium cells: JNK1, P38 kinase, and cell death. Invest. Ophthalmol. Vis. Sci.?2003, 44, 1320–1329, doi:10.1167/iovs.02-0519. 12601065
[92]
Bullard, L.E.; Qi, X.; Penn, J.S. Role for extracellular signal-responsive kinase-1 and -2 in retinal angiogenesis. Invest. Ophthalmol. Vis. Sci.?2003, 44, 1722–1731, doi:10.1167/iovs.01-1193. 12657614
[93]
Hayashi, A.; Koroma, B.M.; Imai, K.; de Juan, E., Jr. Increase of protein tyrosine phosphorylation in rat retina after ischemia-reperfusion injury. Invest Ophthalmol. Vis. Sci.?1996, 37, 2146–2156. 8843901
[94]
Hayashi, A.; Imai, K.; Kim, H.C.; de Juan, E., Jr. Activation of protein tyrosine phosphorylation after retinal branch vein occlusion in cats. Invest. Ophthalmol. Vis. Sci.?1997, 38, 372–380. 9040470
[95]
Guma, M.; Rius, J.; Duong-Polk, K.X.; Haddad, G.G.; Lindsey, J.D.; Karin, M. Genetic and pharmacological inhibition of JNK ameliorates hypoxia-induced retinopathy through interference with VEGF expression. Proc. Natl. Acad. Sci. USA?2009, 106, 8760–8765, doi:10.1073/pnas.0902659106. 19433784
[96]
Bromberg-White, J.L.; Boguslawski, E.; Duesbery, N.S. ?2010. Van Andel Institute, Grand Rapids, MI. Unpublished work.
[97]
Moayeri, M.; Haines, D.; Young, H.A.; Leppla, S.H. Bacillus anthracis lethal toxin induces TNF-alpha-independent hypoxia-mediated toxicity in mice. J. Clin. Invest.?2003, 112, 670–682. 12952916