Therapeutic agents targeting bacterial virulence factors are gaining interest as non-antibiotic alternatives for the treatment of infectious diseases. Clostridium difficile is a Gram-positive pathogen that produces two primary virulence factors, enterotoxins A and B (TcdA and TcdB), which are responsible for Clostridium difficile-associated disease (CDAD) and are targets for CDAD therapy. Antibodies specific for TcdA and TcdB have been shown to effectively treat CDAD and prevent disease relapse in animal models and in humans. This review summarizes the various toxin-specific antibody formats and strategies under development, and discusses future directions for CDAD immunotherapy, including the use of engineered antibody fragments with robust biophysical properties for systemic and oral delivery.
References
[1]
Rupnik, M.; Wilcox, M.H.; Gerding, D.N. Clostridium difficile infection: New developments in epidemiology and pathogenesis. Nat. Rev. Microbiol.?2009, 7, 526–536, doi:10.1038/nrmicro2164. 19528959
O’Connor, J.R.; Johnson, S.; Gerding, D.N. Clostridium difficile infection caused by the epidemic BI/NAP1/027 strain. Gastroenterology?2009, 136, 1913–1924, doi:10.1053/j.gastro.2009.02.073. 19457419
[4]
McDonald, L.C.; Killgore, G.E.; Thompson, A.; Owens, R.C. Jr.; Kazakova, S.V.; Sambol, S.P.; Johnson, S.; Gerding, D.N. An epidemic, toxin gene-variant strain of Clostridium difficile. N. Engl. J. Med.?2005, 353, 2433–2441, doi:10.1056/NEJMoa051590. 16322603
[5]
Warny, M.; Pepin, J.; Fang, A.; Killgore, G.; Thompson, A.; Brazier, J.; Frost, E.; McDonald, L.C. Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet?2005, 366, 1079–1084, doi:10.1016/S0140-6736(05)67420-X. 16182895
[6]
Lyras, D.; O’Connor, J.R.; Howarth, P.M.; Sambol, S.P.; Carter, G.P.; Phumoonna, T.; Poon, R.; Adams, V.; Vedantam, G.; Johnson, S.; Gerding, D.N.; Rood, J.I. Toxin B is essential for virulence of Clostridium difficile. Nature?2009, 458, 1176–1179, doi:10.1038/nature07822. 19252482
[7]
Babcock, G.J.; Broering, T.J.; Hernandez, H.J.; Mandell, R.B.; Donahue, K.; Boatright, N.; Stack, A.M.; Lowy, I.; Graziano, R.; Molrine, D.; Ambrosino, D.M.; Thomas, W.D. Jr. Human monoclonal antibodies directed against toxins A and B prevent Clostridium difficile-induced mortality in hamsters. Infect. Immun.?2006, 74, 6339–6347, doi:10.1128/IAI.00982-06. 16966409
[8]
Kim, P.H.; Iaconis, J.P.; Rolfe, R.D. Immunization of adult hamsters against Clostridium difficile-associated ileocecitis and transfer of protection to infant hamsters. Infect. Immun.?1987, 55, 2984–2992. 3679541
[9]
Lyerly, D.M.; Saum, K.E.; MacDonald, D.K.; Wilkins, T.D. Effects of Clostridium difficile toxins given intragastrically to animals. Infect. Immun.?1985, 47, 349–352. 3917975
[10]
Rasko, D.A.; Sperandio, V. Anti-virulence strategies to combat bacteria-mediated disease. Nat. Rev. Drug Discov.?2010, 9, 117–128, doi:10.1038/nrd3013. 20081869
[11]
Bebbington, C.; Yarranton, G. Antibodies for the treatment of bacterial infections: current experience and future prospects. Curr. Opin. Biotechnol.?2008, 19, 613–619, doi:10.1016/j.copbio.2008.10.002.
[12]
Clatworthy, A.E.; Pierson, E.; Hung, D.T. Targeting virulence: a new paradigm for antimicrobial therapy. Nat. Chem. Biol.?2007, 3, 541–548, doi:10.1038/nchembio.2007.24.
[13]
Jank, T.; Aktories, K. Structure and mode of action of clostridial glucosylating toxins: the ABCD model. Trends Microbiol.?2008, 16, 222–229, doi:10.1016/j.tim.2008.01.011.
[14]
Voth, D.E.; Ballard, J.D. Clostridium difficile toxins: mechanism of action and role in disease. Clin. Microbiol. Rev.?2005, 18, 247–263, doi:10.1128/CMR.18.2.247-263.2005. 15831824
[15]
Jank, T.; Giesemann, T.; Aktories, K. Rho-glucosylating Clostridium difficile toxins A and B: new structural insights into structure and function. Glycobiology?2007, 17, 15R–22R, doi:10.1093/glycob/cwm004.
[16]
Pothoulakis, C. Effects of Clostridium difficile toxins on epithelial cell barrier. Ann. N.Y. Acad. Sci.?2000, 915, 347–356, doi:10.1111/j.1749-6632.2000.tb05263.x.
Albesa-Jové, D.; Bertrand, T.; Carpenter, E.P.; Swain, G.V.; Lim, J.; Zhang, J.; Haire, L.F.; Vasisht, N.; Braun, V.; Lange, A.; von Eichel-Streiber, C.; Svergun, D.I.; Fairweather, N.F.; Brown, K.A. Four distinct structural domains in Clostridium difficile toxin B visualized using SAXS. J. Mol. Biol.?2010, 396, 1260–1270, doi:10.1016/j.jmb.2010.01.012. 20070948
[20]
Dingle, T.; Wee, S.; Mulvey, G.L.; Greco, A.; Kitova, E.N.; Sun, J.; Lin, S.; Klassen, J.S.; Palcic, M.M.; Ng, K.K.; Armstrong, G.D. Functional properties of the carboxy-terminal host cell-binding domains of the two toxins, TcdA and TcdB, expressed by Clostridium difficile. Glycobiology?2008, 18, 698–706, doi:10.1093/glycob/cwn048. 18509107
[21]
Greco, A.; Ho, J.G.; Lin, S.J.; Palcic, M.M.; Rupnik, M.; Ng, K.K. Carbohydrate recognition by Clostridium difficile toxin A. Nat. Struct. Mol. Biol.?2006, 13, 460–461, doi:10.1038/nsmb1084.
[22]
Ho, J.G.; Greco, A.; Rupnik, M.; Ng, K.K. Crystal structure of receptor-binding C-terminal repeats from Clostridium difficile toxin A. Proc. Natl. Acad. Sci. USA?2005, 102, 18373–18378, doi:10.1073/pnas.0506391102. 16344467
[23]
Krivan, H.C.; Clark, G.F.; Smith, D.F.; Wilkins, T.D. Cell surface binding site for Clostridium difficile enterotoxin: evidence for a glycoconjugate containing the sequence Gal alpha 1-3Gal beta 1-4GlcNAc. Infect. Immun.?1986, 53, 573–581. 3744552
[24]
Reineke, J.; Tenzer, S.; Rupnik, M.; Koschinski, A.; Hasselmayer, O.; Schrattenholz, A.; Schild, H.; von Eichel-Streiber, C. Autocatalytic cleavage of Clostridium difficile toxin B. Nature?2007, 446, 415–419, doi:10.1038/nature05622. 17334356
[25]
Egerer, M.; Giesemann, T.; Jank, T.; Satchell, K.J.; Aktories, K. Auto-catalytic cleavage of Clostridium difficile toxins A and B depends on cysteine protease activity. J. Biol. Chem.?2007, 282, 25314–25321, doi:10.1074/jbc.M703062200. 17591770
[26]
Just, I.; Selzer, J.; Wilm, M,; von Eichel-Streiber, C.; Mann, M.; Aktories, K. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature?1995, 375, 500–503. 7777059
[27]
Hecht, G.; Koutsouris, A.; Pothoulakis, C.; LaMont, J.T.; Madara, J.L. Clostridium difficile toxin B disrupts the barrier function of T84 monolayers. Gastroenterology?1992, 102, 416–423. 1732112
[28]
Peláez, T.; Alcalá, L.; Alonso, R.; Rodríguez-Créixems, M.; García-Lechuz, J.M.; Bouza, E. Reassessment of Clostridium difficile susceptibility to metronidazole and vancomycin. Antimicrob. Agents Chemother.?2002, 46, 1647–1650, doi:10.1128/AAC.46.6.1647-1650.2002. 12019070
[29]
Gerding, D.N. Metronidazole for Clostridium difficile-associated disease: is it okay for Mom? Clin. Infect. Dis.?2005, 40, 1598–1600, doi:10.1086/430317.
[30]
Bauer, M.P.; van Dissel, J.T.; Kuijper, E.J. Clostridium difficile: controversies and approaches to management. Curr. Opin. Infect. Dis.?2009, 22, 517–524, doi:10.1097/QCO.0b013e32833229ce. 19738464
[31]
Johnson, S. Recurrent Clostridium difficile infection: a review of risk factors, treatments, and outcome. J. Infect.?2009, 58, 403–410, doi:10.1016/j.jinf.2009.03.010.
[32]
Parkes, G.C.; Sanderson, J.D.; Whelan, K. The mechanisms and efficacy of probiotics in the prevention of Clostridium difficile-associated diarrhoea. Lancet Infect. Dis.?2009, 9, 237–244, doi:10.1016/S1473-3099(09)70059-3.
[33]
O’Horo, J.; Safdar, N. The role of immunoglobulin for the treatment of Clostridium difficile infection: a systemic review. Int. J. Infect. Dis.?2009, 13, 663–667, doi:10.1016/j.ijid.2008.11.012. 19186089
[34]
Musher, D.M.; Logan, N.; Hamill, R.J.; Dupont, H.L.; Lentnek, A.; Gupta, A.; Rossignol, J.F. Nitazoxanide for the treatment of Clostridium difficile colitis. Clin. Infect. Dis.?2006, 43, 421–427, doi:10.1086/506351. 16838229
[35]
Garey, K.W.; Salazar, M.; Shah, D.; Rodrigue, R.; DuPont, H.L. Rifamycin antibiotics for treatment of Clostridium difficile-associated diarrhea. Ann. Pharmacother.?2008, 42, 827–835, doi:10.1345/aph.1K675.
[36]
Farver, D.K.; Hedge, D.D.; Lee, S.C. Ramoplanin: a lipoglycodepsipeptide antibiotic. Ann. Pharmacother.?2005, 39, 863–868, doi:10.1345/aph.1E397. 15784805
[37]
Sullivan, K.M.; Spooner, L.M. Fidaxomicin: a macrocyclic antibiotic for the management of Clostridium difficile infection. Ann. Pharmacother.?2010, 44, 352–359, doi:10.1345/aph.1M351.
[38]
Tung, J.M.; Dolovich, L.R.; Lee, C.H. Prevention of Clostridium difficile infection with Saccharomyces boulardii: a systemic review. Can. J. Gastroenterol.?2009, 23, 817–821. 20011734
[39]
Guarino, A.; Lo Vecchio, A.; Canani, R.B. Probiotics as prevention and treatment for diarrhea. Curr. Opin. Gastroenterol.?2009, 25, 18–23, doi:10.1097/MOG.0b013e32831b4455. 19114770
[40]
Aas, J.; Gessert, C.E.; Bakken, J.S. Recurrent Clostridium difficile colitis: case series involving 18 patients treated with donor stool administered via a nasogastric tube. Clin. Infect. Dis.?2003, 36, 580–585, doi:10.1086/367657.
[41]
Moncino, M.D.; Falletta, J.M. Multiple relapses of Clostridium difficile-associated diarrhea in a cancer patient. Successful control with long-term cholestyramine therapy. Am. J. Pediatr. Hematol. Oncol.?1992, 14, 361–364, doi:10.1097/00043426-199211000-00015. 1456403
[42]
Scheinfeld, N.; Biggers, K. Tolevamer, an orally administered, toxin-binding polymer for Clostridium difficile-associated diarrhea. Curr. Opin. Investig. Drugs?2008, 9, 913–924. 18666039
Ní Eidhin, D.B.; O’Brien, J.B.; McCabe, M.S.; Athié-Morales, V.; Kelleher, D.P. Active immunization of hamsters against Clostridium difficile infection using surface-layer protein. FEMS Immunol. Med. Microbiol.?2008, 52, 207–218, doi:10.1111/j.1574-695X.2007.00363.x.
[45]
Gardiner, D.F.; Rosenberg, T.; Zaharatos, J.; Franco, D.; Ho, D.D. A DNA vaccine targeting the receptor-binding domain of Clostridium difficile toxin A. Vaccine?2009, 27, 3598–3604, doi:10.1016/j.vaccine.2009.03.058. 19464540
[46]
Deng, X.K.; Nesbit, L.A.; Morrow, K.J. Jr. Recombinant single-chain variable fragment antibodies directed against Clostridium difficile toxin B produced by use of an optimized phage display system. Clin. Diagn. Lab Immunol.?2003, 10, 587–595. 12853390
[47]
Hussack, G.; Arbabi-Ghahroudi, M.; van Faassen, H.; Songer, J.G.; MacKenzie, R.; Tanha, J. Manuscript in preparation. ?2010.
[48]
Holliger, P.; Hudson, P.J. Engineered antibody fragments and the rise of single domains. Nat. Biotechnol.?2005, 23, 1126–1136, doi:10.1038/nbt1142.
[49]
Kyne, L.; Warny, M.; Qamar, A.; Kelly, C.P. Association between antibody response to toxin A and protection against recurrent Clostridium difficile diarrhoea. Lancet?2001, 357, 189–193, doi:10.1016/S0140-6736(00)03592-3. 11213096
[50]
Warny, M.; Vaerman, J.P.; Avesani, V.; Delmée, M. Human antibody response to Clostridium difficile toxin A in relation to clinical course of infection. Infect. Immun.?1994, 62, 384–389. 8300199
[51]
Viscidi, R.; Laughon, B.E.; Yolken, R.; Bo-Linn, P.; Moench, T.; Ryder, R.W.; Bartlett, J.G. Serum antibody response to toxins A and B of Clostridium difficile. J. Infect. Dis.?1983, 148, 93–100, doi:10.1093/infdis/148.1.93.
[52]
Katchar, K.; Taylor, C.P.; Tummala, S.; Chen, X.; Sheikh, J.; Kelly, C.P. Association between IgG2 and IgG3 subclass responses to toxin A and recurrent Clostridium difficile-associated disease. Clin. Gastroenterol. Hepatol.?2007, 5, 707–713, doi:10.1016/j.cgh.2007.02.025. 17544998
[53]
Leung, D.Y.; Kelly, C.P.; Boguniewicz, M.; Pothoulakis, C.; LaMont, J.T.; Flores, A. Treatment with intravenously administered gamma globulin of chronic relapsing colitis induced by Clostridium difficile toxin. J. Pediatr.?1991, 118, 633–637, doi:10.1016/S0022-3476(05)83393-1.
[54]
Johal, S.S.; Lambert, C.P.; Hammond, J.; James, P.D.; Borriello, S.P.; Mahida, Y.R. Colonic IgA producing cells and macrophages are reduced in recurrent and non-recurrent Clostridium difficile associated diarrhoea. J. Clin. Pathol.?2004, 57, 973–979, doi:10.1136/jcp.2003.015875. 15333661
[55]
Kelly, C.P.; Pothoulakis, C.; Orellana, J.; LaMont, J.T. Human colonic aspirates containing immunoglobulin A antibody to Clostridium difficile toxin A inhibit toxin A-receptor binding. Gastroenterology?1992, 102, 35–40. 1309359
[56]
Johnson, S.; Sypura, W.D.; Gerding, D.N.; Ewing, S.L.; Janoff, E.N. Selective neutralization of a bacterial enterotoxin by serum immunoglobulin A in response to mucosal disease. Infect. Immun.?1995, 63, 3166–3173. 7622244
[57]
Giannasca, P.J.; Warny, M. Active and passive immunization against Clostridium difficile diarrhea and colitis. Vaccine?2004, 22, 848–856, doi:10.1016/j.vaccine.2003.11.030.
[58]
Kim, P.H.; Rolfe, R.D. Characterization of protective antibodies in hamsters immunized against C. difficile toxins A and B. Microb. Ecol. Health Dis.?1989, 2, 47–59, doi:10.3109/08910608909140200.
[59]
Allo, M.; Silva, J., Jr.; Fekety, R.; Rifkin, G.D.; Waskin, H. Prevention of clindamycin-induced colitis in hamsters by Clostridium sordellii antitoxin. Gastroenterology?1979, 76, 351–355. 759263
[60]
Lyerly, D.M.; Phelps, C.J.; Toth, J.; Wilkins, T.D. Characterization of toxins A and B of Clostridium difficile with monoclonal antibodies. Infect. Immun.?1986, 54, 70–76. 2428753
[61]
Kamiya, S.; Yamakawa, K.; Meng, X.Q.; Ogura, H.; Nakamura, S. Production of monoclonal antibody to Clostridium sordellii toxin A which neutralizes enterotoxicity but not haemagglutination activity. FEMS Microbiol. Lett.?1991, 81, 311–316, doi:10.1111/j.1574-6968.1991.tb04778.x.
[62]
Corthier, G.; Muller, M.C.; Wilkins, T.D.; Lyerly, D.; L’Haridon, R. Protection against experimental pseudomembranous colitis in gnotobiotic mice by use of monoclonal antibodies against Clostridium difficile toxin A. Infect. Immun.?1991, 59, 1192–1195. 1900059
[63]
Lyerly, D.M.; Bostwick, E.F.; Binion, S.B.; Wilkins, T.D. Passive immunization of hamsters against disease caused by Clostridium difficile by use of bovine immunoglobulin G concentrate. Infect. Immun.?1991, 59, 2215–2218. 2037383
Kink, J.A.; Williams, J.A. Antibodies to recombinant Clostridium difficile toxins A and B are an effective treatment and prevent relapse of C. difficile-associated disease in a hamster model of infection. Infect. Immun.?1998, 66, 2018–2025. 9573084
[66]
Giannasca, P.J.; Zhang, Z.X.; Lei, W.D.; Boden, J.A.; Giel, M.A.; Monath, T.P.; Thomas, W.D. Jr. Serum antitoxin antibodies mediate systemic and mucosal protection from Clostridium difficile disease in hamsters. Infect. Immun.?1999, 67, 527–538. 9916055
[67]
van Dissel, J.T.; de Groot, N.; Hensgens, C.M.; Numan, S.; Kuijper, E.J.; Veldkamp, P.; van ’t Wout, J. Bovine antibody-enriched whey to aid in the prevention of a relapse of Clostridium difficile-associated diarrhoea: preclinical and preliminary clinical data. J. Med. Microbiol.?2005, 54, 197–205, doi:10.1099/jmm.0.45773-0.
[68]
Salcedo, J.; Keates, S.; Pothoulakis, C.; Warny, M.; Castagliuolo, I.; LaMont, J.T.; Kelly, C.P. Intravenous immunoglobulin therapy for severe Clostridium difficile colitis. Gut?1997, 41, 366–370, doi:10.1136/gut.41.3.366. 9378393
Wilcox, M.H. Descriptive study of intravenous immunoglobulin for the treatment of recurrent Clostridium difficile diarrhoea. J. Antimicrob. Chemother.?2004, 53, 882–884, doi:10.1093/jac/dkh176.
[71]
McPherson, S.; Rees, C.J.; Ellis, R.; Soo, S.; Panter, S.J. Intravenous immunoglobulin for the treatment of severe, refractory, and recurrent Clostridium difficile diarrhea. Dis. Colon Rectum?2006, 49, 640–645. 16525744
[72]
Murphy, C.; Vernon, M.; Cullen, M. Intravenous immunoglobulin for resistant Clostridium difficile infection. Age Ageing?2006, 35, 85–86, doi:10.1093/ageing/afi212.
[73]
Hassoun, A.; Ibrahim, F. Use of intravenous immunoglobulin for the treatment of severe Clostridium difficile colitis. Am. J. Geriatr. Pharmacother.?2007, 5, 48–51, doi:10.1016/j.amjopharm.2007.03.001.
[74]
Koulaouzidis, A.; Tatham, R.; Moschos, J.; Tan, C.W. Successful treatment of Clostridium difficile colitis with intravenous immunoglobulin. J. Gastrointestin. Liver Dis.?2008, 17, 353–355. 18836636
[75]
Chandrasekar, T.; Naqvi, N.; Waddington, A.; Cooke, R.P.D.; Anijeet, H.; Gradden, C.W.; Abraham, K.A.; Wong, C.F. Intravenous immunoglobulin therapy for refractory Clostridium difficile toxin colitis in chronic kidney disease: case reports and literature review. NDT Plus?2008, 1, 20–22, doi:10.1093/ndtplus/sfm008.
[76]
Juang, P.; Skledar, S.J.; Zgheib, N.K.; Paterson, D.L.; Vergis, E.N.; Shannon, W.D.; Ansani, N.T.; Branch, R.A. Clinical outcomes of intravenous immune globulin in severe Clostridium difficile-associated diarrhea. Am. J. Infect. Control?2007, 35, 131–137, doi:10.1016/j.ajic.2006.06.007. 17327194
[77]
Abougergi, M.S.; Broor, A.; Cui, W.; Jaar, B.G. Intravenous immunoglobulin for the treatment of severe Clostridium difficile colitis: an observational study and review of the literature. J. Hospital Med.?2010, 5, E1–E9.
[78]
Tjellstr?m, B.; Stenhammar, L.; Eriksson, S.; Magnusson, K.E. Oral immunoglobulin A supplement in treatment of Clostridium difficile enteritis. Lancet?1993, 341, 701–702. 8095616
[79]
Numan, S.C.; Veldkamp, P.; Kuijper, E.J.; van den Berg, R.J.; van Dissel, J.T. Clostridium difficile-associated diarrhoea: bovine anti-Clostridium difficile whey protein to help aid the prevention of relapses. Gut?2007, 56, 888–889, doi:10.1136/gut.2006.119016. 17519495
[80]
Mattila, E.; Anttila, V.J.; Broas, M.; Marttila, H.; Poukka, P.; Kuusisto, K.; Pusa, L.; Sammalkorpi, K.; Dabek, J.; Koivurova, O.P.; V?h?talo, M.; Moilanen, V.; Widenius, T. A randomized, double-blind study comparing Clostridium difficile immune whey and metronidazole for recurrent Clostridium difficile-associated diarrhoea: efficacy and safety data of a prematurely interrupted trial. Scand. J. Infect. Dis.?2008, 40, 702–708, doi:10.1080/00365540801964960. 19086244
[81]
Lowy, I.; Molrine, D.C.; Leav, B.A.; Blair, B.M.; Baxter, R.; Gerding, D.N.; Nichol, G.; Thomas, W.D. Jr.; Leney, M.; Sloan, S.; Hay, C.A.; Ambrosino, D.M. Treatment with monoclonal antibodies against Clostridium difficile toxins. N. Engl. J. Med.?2010, 362, 197–205, doi:10.1056/NEJMoa0907635. 20089970
[82]
Kyne, L. Clostridium difficile-beyond antibiotics. N. Engl. J. Med.?2010, 362, 264–265, doi:10.1056/NEJMe0910055.
[83]
Yoshida, M.; Kobayashi, K.; Kuo, T.T.; Bry, L.; Glickman, J.N.; Claypool, S.M.; Kaser, A.; Nagaishi, T.; Higgins, D.E.; Mizoguchi, E.; Wakatsuki, Y.; Roopenian, D.C.; Mizoguchi, A.; Lencer, W.I.; Blumberg, R.S. Neonatal Fc receptor for IgG regulates mucosal immune responses to luminal bacteria. J. Clin. Invest.?2006, 116, 2142–2151, doi:10.1172/JCI27821. 16841095
[84]
Warny, M.; Fatimi, A.; Bostwick, E.F.; Laine, D.C.; Lebel, F.; LaMont, J.T.; Pothoulakis, C.; Kelly, C.P. Bovine immunoglobulin concentrate-Clostridium difficile retains C. difficile toxin neutralising activity after passage through the human stomach and small intestine. Gut?1999, 44, 212–217, doi:10.1136/gut.44.2.212. 9895380
Powers, D.B.; Amersdorfer, P.; Poul, M.; Nielsen, U.B.; Shalaby, M.R.; Adams, G.P.; Marks, J.D. Expression of single-chain Fv-Fc fusions in Pichia pastoris. J. Immunol. Methods?2001, 251, 123–135, doi:10.1016/S0022-1759(00)00290-8.
[87]
Zhang, J.; MacKenzie, R.; Durocher, Y. Production of chimeric heavy-chain antibodies. Methods Mol. Biol.?2009, 525, 323–336, doi:10.1007/978-1-59745-554-1_17.
[88]
Van Bockstaele, F.; Holz, J.B.; Revets, H. The development of nanobodies for therapeutic applications. Curr. Opin. Investig. Drugs?2009, 10, 1212–1224. 19876789
[89]
Wesolowski, J.; Alzogaray, V.; Reyelt, J.; Unger, M.; Juarez, K.; Urrutia, M.; Cauerhff, A.; Danguah, W.; Rissiek, B.; Scheuplein, F.; Schwarz, N.; Adriouch, S.; Boyer, O.; Seman, M.; Licea, A.; Serreze, D.V.; Goldbaum, F.A.; Haag, F.; Koch-Nolte, F. Single domain antibodies: promising experimental and therapeutic tools in infection and immunity. Med. Microbiol. Immunol.?2009, 198, 157–174, doi:10.1007/s00430-009-0116-7. 19529959
[90]
Ryan, S.; Kell, A.J.; van Faassen, H.; Tay, L.L.; Simard, B.; MacKenzie, R.; Gilbert, M.; Tanha, J. Single-domain antibody-nanoparticles: promising architectures for increased Staphylococcus aureus detection specificity and sensitivity. Bioconjug. Chem.?2009, 20, 1966–1974, doi:10.1021/bc900332r. 19751063
[91]
To, R.; Hirama, T.; Arbabi-Ghahroudi, M.; MacKenzie, R.; Wang, P.; Xu, P.; Ni, F.; Tanha, J. Isolation of monomeric human V(H)s by a phage selection. J. Biol. Chem.?2005, 280, 41395–41403, doi:10.1074/jbc.M509900200. 16221664
Ward, E.S.; Güssow, D.; Griffiths, A.D.; Jones, P.T.; Winter, G. Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature?1989, 341, 544–546, doi:10.1038/341544a0. 2677748
[94]
De Genst, E.; Saerens, D.; Muyldermans, S.; Conrath, K. Antibody repertoire development in camelids. Dev. Comp. Immunol.?2006, 30, 187–198, doi:10.1016/j.dci.2005.06.010.
[95]
Arbabi-Ghahroudi, M.; Desmyter, A.; Wyns, L.; Hamers, R.; Muyldermans, S. Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett.?1997, 414, 521–526, doi:10.1016/S0014-5793(97)01062-4. 9323027
Dooley, H.; Flajnik, M.F. Antibody repertoire development in cartilaginous fish. Dev. Comp. Immunol.?2006, 30, 43–56, doi:10.1016/j.dci.2005.06.022.
[98]
Harmsen, M.M.; De Haard, H.J. Properties, production, and applications of camelid single-domain antibody fragment. Appl. Microbiol. Biotechnol.?2007, 77, 13–22, doi:10.1007/s00253-007-1142-2.
[99]
Harmsen, M.M.; van Solt, C.B.; van Zijderveld-van Bemmel, A.M.; Niewold, T.A.; van Zijderveld, F.G. Selection and optimization of proteolytically stable llama single-domain antibody fragments for oral immunotherapy. Appl. Microbiol. Biotechnol.?2006, 72, 544–551, doi:10.1007/s00253-005-0300-7.
[100]
Famm, K.; Hansen, L.; Christ, D.; Winter, G. Thermodynamically stable aggregation-resistant antibody domains through directed evolution. J. Mol. Biol.?2008, 376, 926–931, doi:10.1016/j.jmb.2007.10.075.
[101]
Jespers, L.; Schon, O.; Famm, K.; Winter, G. Aggregation-resistant domain antibodies selected on phage by heat denaturation. Nat. Biotechnol.?2004, 22, 1161–1165, doi:10.1038/nbt1000. 15300256
[102]
Stijlemans, B.; Conrath, K.; Cortez-Retamozo, V.; Van Xong, H.; Wyns, L.; Senter, P.; Revets, H.; De Baetselier, P.; Muyldermans, S.; Magez, S. Efficient targeting of conserved cryptic epitopes of infectious agents by single domain antibodies. African trypanosomes as paradigm. J. Biol. Chem.?2004, 279, 1256–1261. 14527957
[103]
De Genst, E.; Silence, K.; Decanniere, K.; Conrath, K.; Loris, R.; Kinne, J.; Muyldermans, S.; Wyns, L. Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc. Natl. Acad. Sci. USA?2006, 103, 4586–4591, doi:10.1073/pnas.0505379103. 16537393
[104]
Stanfield, R.L.; Dooley, H.; Flajnik, M.F.; Wilson, I.A. Crystal structure of the shark single-domain antibody V region in complex with lysozyme. Science?2004, 305, 1770–1773, doi:10.1126/science.1101148. 15319492
[105]
Desmyter, A.; Transue, T.R.; Ghahroudi, M.A.; Thi, M.H.; Poortmans, F.; Hamers, R.; Muyldermans, S.; Wyns, L. Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. Nat. Struct. Biol.?1996, 3, 803–811, doi:10.1038/nsb0996-803. 8784355
[106]
Hmila, I.; Abdallah, R.B.A.; Saerens, D.; Benlasfar, Z.; Conrath, K.; Ayeb, M.E.; Muyldermans, S.; Bouhaouala-Zahar, B. VHH, bivalent domains and chimeric heavy chain-only antibodies with high neutralizing efficacy for scorpion toxin AahI’. Mol. Immunol.?2008, 45, 3847–3856, doi:10.1016/j.molimm.2008.04.011. 18614235
[107]
Harmsen, M.M.; van Solt, C.B.; Fijten, H.P. Enhancement of toxin- and virus-neutralizing capacity of single-domain antibody fragments by N-glycosylation. Appl. Microbiol. Biotechnol.?2009, 84, 1087–1094, doi:10.1007/s00253-009-2029-1.
Koch-Nolte, F.; Reyelt, J.; Sch?ssow, B.; Schwarz, N.; Scheuplein, F.; Rothenburg, S.; Haag, F.; Alzogaray, V.; Cauerhff, A.; Goldbaum, F.A. Single domain antibodies from llama effectively and specifically block T cell ecto-ADP-ribosyltransferase ART2.2 in vivo. FASEB J.?2007, 21, 3490–3498, doi:10.1096/fj.07-8661com. 17575259
[110]
Stone, E.; Hirama, T.; Chen, W.; Soltyk, A.L.; Brunton, J.; MacKenzie, C.R.; Zhang, J. A novel pentamer versus pentamer approach to generating neutralizers of verotoxin 1. Mol. Immunol.?2007, 44, 2487–2491, doi:10.1016/j.molimm.2006.10.020. 17134756
[111]
Forsman, A.; Beirnaert, E.; Aasa-Chapman, M.M.; Hoorelbeke, B.; Hijazi, K.; Koh, W.; Tack, V.; Szynol, A.; Kelly, C.; McKnight, A.; Verrips, T.; de Haard, H.; Weiss, R.A. Llama antibody fragments with cross-subtype human immunodeficiency virus type 1 (HIV-1)-neutralizing properties and high affinity for HIV-1 gp120. J. Virol.?2008, 82, 12069–12081, doi:10.1128/JVI.01379-08. 18842738
[112]
Garaicoechea, L.; Olichon, A.; Marcoppido, G.; Wigdorovitz, A.; Mozgovoj, M.; Saif, L.; Surrey, T.; Parre?o, V. Llama-derived single-chain antibody fragments directed to rotavirus VP6 protein possess broad neutralizing activity in vitro and confer protection against diarrhea in mice. J. Virol.?2008, 82, 9753–9764, doi:10.1128/JVI.00436-08. 18632867
[113]
van der Vaart, J.M.; Pant, N.; Wolvers, D.; Bezemer, S.; Hermans, P.W.; Bellamy, K.; Sarker, S.A.; van der Logt, C.P.; Svensson, L.; Verrips, C.T.; Hammarstrom, L.; van Klinken, B.J. Reduction in morbidity of rotavirus induced diarrhoea in mice by yeast produced monovalent llama-derived antibody fragments. Vaccine?2006, 24, 4130–4137, doi:10.1016/j.vaccine.2006.02.045. 16616802
[114]
Koide, A.; Tereshko, V.; Uysal, S.; Margalef, K.; Kossiakoff, A.A.; Koide, S. Exploring the capacity of minimalist protein interfaces: interface energetics and affinity maturation to picomolar KD of a single-domain antibody with a flat paratope. J. Mol. Biol.?2007, 373, 941–953, doi:10.1016/j.jmb.2007.08.027. 17888451
[115]
Cortez-Retamozo, V.; Backmann, N.; Senter, P.D.; Wernery, U.; De Baetselier, P.; Muyldermans, S.; Revets, H. Efficient cancer therapy with a nanobody-based conjugate. Cancer Res.?2004, 64, 2853–2857, doi:10.1158/0008-5472.CAN-03-3935. 15087403
[116]
Saerens, D.; Kinne, J.; Bosmans, E.; Wernery, U.; Muyldermans, S.; Conrath, K. Single domain antibodies derived from dromedary lymph node and peripheral blood lymphocytes sensing conformational variants of prostate-specific antigen. J. Biol. Chem.?2004, 279, 51965–51972. 15459193
[117]
Deckers, N.; Saerens, D.; Kanobana, K.; Conrath, K.; Victor, B.; Wernery, U.; Vercruysse, J.; Muyldermans, S.; Dorny, P. anobodies, a promising tool for species-specific diagnosis of Taenia solium cysticercosis. Int. J. Parasitol.?2009, 39, 625–633, doi:10.1016/j.ijpara.2008.10.012. 19041315
Ben Abderrazek, R.; Hmila, I.; Vincke, C.; Benlasfar, Z.; Pellis, M.; Dabbek, H.; Saerens, D.; El Ayeb, M.; Muyldermans, S.; Bouhaouala-Zahar, B. Identification of potent nanobodies to neutralize the most poisonous polypeptide from scorpion venom. Biochem. J.?2009, 424, 263–272, doi:10.1042/BJ20090697. 19732033
[120]
Hmila, I.; Saerens, D.; Ben Abderrazek, R.; Vincke, C.; Abidi, N.; Benlasfar, Z.; Govaert, J.; El Ayeb, M.; Bouhaouala-Zahar, B.; Muyldermans, S. A bispecific antibody to provide full protection against lethal scorpion envenoming. FASEB J.?2010. Epub ahead of print.
[121]
Demarest, S.J.; Hariharan, M.; Elia, M.; Salbato, J.; Jin, P.; Bird, C.; Short, J.M.; Kimmel, B.E.; Dudley, M.; Woodnutt, G.; Hansen, G. Neutralization of Clostridium difficile toxin A using antibody combinations. MAbs?2010, 2. Epub ahead of print.