Natural toxins are a source of new chemical classes of pesticides, as well as environmentally and toxicologically safer molecules than many of the currently used pesticides. Furthermore, they often have molecular target sites that are not exploited by currently marketed pesticides. There are highly successful products based on natural compounds in the major pesticide classes. These include the herbicide glufosinate (synthetic phosphinothricin), the spinosad insecticides, and the strobilurin fungicides. These and other examples of currently marketed natural product-based pesticides, as well as natural toxins that show promise as pesticides from our own research are discussed.
References
[1]
Duke, S.O.; Abbas, H.K.; Amagasa, T.; Tanaka, T. Phytotoxins of microbial origin with potential for use as herbicides. In Crop Protection Agents from Nature: Natural Products and Analogues, Critical Reviews on Applied Chemistry; Copping, L.G., Ed.; Society for Chemical Industries: Cambridge, UK, 1996; Volume 35, pp. 82–113.
[2]
Copping, L.G.; Duke, S.O. Natural products that have been used commercially as crop protection agents—a review. Pest Manag. Sci.?2007, 63, 524–554, doi:10.1002/ps.1378. 17487882
Duke, S.O.; Rimando, A.M.; Schrader, K.K.; Cantrell, C.L.; Meepagala, K.M.; Wedge, D.E.; Tabanca, N.; Dayan, F.E. Natural products for pest management. In Selected Topics in the Chemistry of Natural Products; Ikan, R., Ed.; World Scientific: Singapore, Singapore, 2008; pp. 209–251.
Lydon, J.; Duke, S.O. Inhibitors of glutamine biosynthesis. In Plant Amino Acids: Biochemistry and Biotechnology; Singh, B.K., Ed.; Marcel Dekker: New York, NY, USA, 1999; pp. 445–464.
[7]
Duke, S.O.; Cerdeira, A.L. Transgenic crops for herbicide resistance. In Transgenic Crop Plants: Utilization and Biosafety; Kole, C., Michler, C.H., Abbott, A.G., Hall, T.C., Eds.; Springer-Verlag: Berlin, Germany, 2010; Volume 2, pp. 133–166.
[8]
Duke, S.O.; Powles, S.B. Glyphosate: A once in a century herbicide. Pest Manag. Sci.?2008, 64, 319–325, doi:10.1002/ps.1518. 18273882
[9]
Duke, S.O. Microbial phytotoxins as herbicides - a perspective. In The Science of Allelopathy; Putnam, A.R., Tang, C.S., Eds.; John Wiley: New York, NY, USA, 1986; pp. 287–304.
[10]
Abbas, H.K.; Tanaka, T.; Duke, S.O.; Boyette, C.D. Susceptibility of various crop and weed species to AAL-toxin, a natural herbicide. Weed Technol.?1995, 9, 125–130.
[11]
Abbas, H.K.; Tanaka, Y.; Duke, S.O.; Porter, J.K.; Wray, E.M.; Hodges, L.; Sessions, A.E.; Wang, E.; Merrill, A.H.; Riley, R.T. Fumonisin and AAL-toxin-induced disruption of sphingolipid metabolism with accumulation of free sphingoid bases: Involvement in plant disease. Plant Physiol.?1994, 106, 1085–1093. 12232389
[12]
Abbas, H.K.; Duke, S.O.; Shier, W.T.; Riley, R.T.; Kraus, G.A. The chemistry and biological activities of the natural products AAL-toxin and the fumonisins. In Natural Toxins 2: Structure, Mechanism of Action, and Detection (Advances in Experimental Medicine and Biology); Singh, B.R., Tu, A.T., Eds.; Plenum: New York, NY, USA, 1996; Volume 391, pp. 293–308.
[13]
Lee, D.L.; Prisbylla, M.P.; Cromatie, T.H.; Dagarin, D.P.; Howard, S.W.; Provan, W.M.; Ellis, M.K.; Fraser, T.; Mutter, L.C. The discovery and structural requirements of inhibitors of p-hydroxyphenylpyruvate dioxygenase. Weed Sci.?1997, 45, 601–609.
[14]
Dayan, F.E.; Duke, S.O.; Sauldubois, A.; Singh, N.; McCurdy, C.; Cantrell, C.L. p-Hydroxyphenylpyruvate dioxygenase is a target site for β-triketones from Leptospermum scoparium. Phytochemistry?2007, 68, 2004–2014, doi:10.1016/j.phytochem.2007.01.026. 17368492
[15]
Nauen, R. Insecticide mode of action: return of the ryanodine receptor. Pest Manag. Sci.?2006, 62, 690–692, doi:10.1002/ps.1254. 16770834
[16]
Orr, N.; Shaffner, A.J.; Richey, K.; Crouse, G.D. Novel mode of action of spinosad: Receptor binding studies demonstrating lack of interaction with known insecticidal target sites. Pestic. Biochem. Physiol.?2009, 95, 1–5, doi:10.1016/j.pestbp.2009.04.009.
[17]
Sparks, T.C.; Crouse, G.D.; Durst, G. Natural products as insecticides: the biology, biochemistry and quantitative structure–activity relationships of spinosyns and spinosoids. Pest Manag. Sci.?2001, 57, 896–905, doi:10.1002/ps.358. 11695182
[18]
Snyder, D.E.; Meyer, J.; Zimmermann, A.G.; Qiao, M.; Gissendanner, S.J.; Cruthers, L.R.; Slone, R.L; Young, D.R. Preliminary studies on the effectiveness of the novel pulicide, spinosad, for the treatment and control of fleas on dogs. Vet. Parasitol.?2007, 150, 345–351, doi:10.1016/j.vetpar.2007.09.011. 17980490
[19]
Isman, M.B. The role of botanical insecticides, deterrents and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol.?2006, 51, 45–66, doi:10.1146/annurev.ento.51.110104.151146. 16332203
[20]
Casida, J.E.; Quistad, G.B. Pyrethrums, a benefit to human welfare. In Pyrethrum Flowers: Production, Chemistry, Toxicology and Uses; Casida, J.E., Quistad, G.B., Eds.; Oxford University: New York, NY, USA, 1995; pp. 345–350.
[21]
Chang, C.P.; Plapp, F.W., Jr. DDT and Synthetic pyrethroids: Mode of action, selectivity, and mechanism of synergism in the tobacco budworm (Lepidoptera: Noctuidae) and a predator, Chrysopa carnea Stephens (Neuroptera: Chrysopidae). J. Econ. Entomol.?1983, 76, 1206–1210.
[22]
Clark, J.M. Insecticides as Tools in probing vital receptors and enzymes in excitable membranes. Pestic. Biochem. Physiol.?1997, 57, 235–254, doi:10.1006/pest.1997.2271.
[23]
Campbell, W.C. Ivermectin and Abamectin; Springer-Verlag: New York, NY, USA, 1989; p. 361.
[24]
Kornis, G.I. Avermectins and milbemycins. In Agrochemicals from Natural Products; Godfrey, C.R.A., Ed.; Marcel Dekker: New York, NY, USA, 1995; pp. 215–255.
Hayes, W.J.; Laws, E.R. Handbook of Pesticide Toxicology, Classes of Pesticides; Academic: New York, NY, USA, 1990; Volume 3.
[27]
Arena, J.P.; Liu, K.K.; Paress, P.S.; Frazier, E.G.; Cully, D.F.; Mrozik, H.; Schaeffer, J. The mechanism of action of avermectins in Caenorhabditis elegans: Correlation between activation of glutamate-sensitive chloride current, membrane binding, and biological Activity. J. Parasitol.?1995, 81, 286–294, doi:10.2307/3283936. 7707209
[28]
Mordue, A.J.; Blackwell, A. Azadirachtin: an update. J. Insect Phys.?1993, 39, 903–924, doi:10.1016/0022-1910(93)90001-8.
[29]
Fang, N.; Casida, J.E. Cube resin insecticide: Identification and biological activity of 29 rotenoid constituents. J. Agric. Food Chem.?1999, 47, 2130–2136, doi:10.1021/jf981188x. 10552508
[30]
Barton, D.H.R.; Jeger, O.; Prelog, V.; Woodward, R.B. The constitutions of cevine and some related alkaloids. Experientia?1954, 10, 81–90, doi:10.1007/BF02158513. 13161888
[31]
Schmelz, I. Nicotine and other tobacco alkaloids. In Naturally Occurring Insecticides; Jacobson, M., Crosby, D.G., Eds.; Marcel Dekker: New York, NY, USA, 1971; pp. 99–136.
[32]
Liu, B.; Chen, C.; Wu, D.; Su, Q. Enantiomeric analysis of anatabine, nornicotine and anabasine in commercial tobacco by multi-dimensional gas chromatography and mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.?2008, 865, 13–17, doi:10.1016/j.jchromb.2008.01.034. 18342587
[33]
Lax, A.R.; Osbrink, W.L.A. Research on targeted management of the Formosan subterranean termite Coptotermes formosanus Shiraki Isoptera: Rhinotermitidae. Pest Manag. Sci.?2003, 59, 788–800, doi:10.1002/ps.721. 12846330
[34]
Chiasson, H.; Belanger, A.; Bostanian, N.; Vincent, C.; Poliquin, A. Acaricidal properties of Artemisia absinthium and Tanacetum vulgare (Asteraceae) essential oils obtained by three methods of extraction. J. Econ. Entomol.?2001, 94, 167–171, doi:10.1603/0022-0493-94.1.167. 11233109
[35]
Gonzalez-Coloma, A.; Guadano, A.; Tonn, C.E.; Sosa, M.E. Antifeedant/insecticidal terpenes from Asteraceae and Labiatae species native to Argentinean semi-arid lands. Z. Naturforsch., C, J. Biosci.?2005, 60, 855–861. 16402545
[36]
Gupta, S.C.; Misra, A.K. Management of okra shoot of fruit borer, Earias vittella fabr. through bio-rational insecticides. Pestic. Res. J.?2006, 18, 33–34.
[37]
Prasad, S.M.; Prasad, N.; Barnwal, M.K. Evaluation of insecticides against aphid vectors of virus diseases of French Bean. J. Plant Protect. Environ.?2006, 3, 87–90.
[38]
Sharma, D.C.; Badiyala, A.; Choudhary, A. Bioefficacy and persistent toxicity of biopesticides and insecticides against potato tuber moth, Phthorimaea opercullela Zell. on spring potato. Pestic. Res. J.?2006, 18, 43–46.
[39]
Hadacek, F.; Mueller, C.; Werner, A.; Greger, H.; Proksch, P. Analysis, isolation and insecticidal activity of linear furanocoumarins and other coumarin derivatives from Peucedanum (Apiaceae: Apioideae). J. Chem. Ecol.?1994, 20, 2035–2054, doi:10.1007/BF02066241.
[40]
Kang, S.; Kim, H.; Lee, W.; Ahn, Y. Toxicity of bisabolangelone from Ostericum koreanum roots to Dermatophagoides farinae and Dermatophagoides pteronyssinus (Acari: Pyroglyphidae). J. Agric. Food Chem.?2006, 54, 3547–3550, doi:10.1021/jf060140d. 19127723
[41]
Meepagala, K.; Osbrink, W.; Sturtz, G.; Lax, A. Plant-derived natural products exhibiting activity against Formosan subterranean termites (Coptotermes formosanus). Pest Manag. Sci.?2006, 62, 565–570, doi:10.1002/ps.1214. 16625680
[42]
Meepagala, K.M.; Kuhajek, J.M.; Sturtz, G.; Wedge, D.E. Vulgarone B, the antifungal constituent in the steam-distilled fraction of Artemisia douglasiana. J. Chem. Ecol.?2003, 29, 1771–1780, doi:10.1023/A:1024842009802. 12956506
[43]
Zhu, B.C.R.; Henderson, G.; Chen, F.; Maistrello, L.; Laine, R.A. Nootkatone is a repellent for Formosan subterranean termite (Coptotermes formosanus). J. Chem. Ecol.?2001, 27, 523–531, doi:10.1023/A:1010301308649. 11441443
[44]
Pridgeon, J.W.; Becnel, J.J.; Wang, Z.; Katritzky, A.R.; Meepagala, K.M.; Clark, G.G. Structure-activity relationships of 33 piperidines as toxicants against female adults of Aedes aegypti (Diptera: Culicidae). J. Med. Entomol.?2007, 44, 263–269, doi:10.1603/0022-2585(2007)44[263:SROPAT]2.0.CO;2. 17427695
[45]
Meepagala, K.M. 2008. USDA, ARS NPURU, Oxford, MS, USA. Unpublished work.
[46]
Goll, P.H.; Lemma, A.; Duncan, J.; Mazengia, B. Control of schistosomiasis in Adwa, Ethiopia, using the plant molluscicide endod (Phytolacca dodecandra). Tropenmedizin und Parasitologie?1983, 34, 177–183. 6636299
[47]
Marston, A.; Hostetmann, K. Plant molluscicides. Phytochemistry?1985, 24, 639–652, doi:10.1016/S0031-9422(00)84870-0.
[48]
Mitchell, A.J. Update and impact of a trematode that infects cultured channel catfish. Catfish J.?2001, 16, 17–27.
[49]
Meepagala, K.M.; Sturtz, G.; Mischke, C.C.; Wise, D.; Duke, S.O. Molluscicidal activity of vulgarone B against ram's horn snail (Planorbella trivolvis). Pest Manag. Sci.?2004, 60, 479–482, doi:10.1002/ps.833. 15154515
[50]
Meepagala, K.M.; Sturtz, G.; Wise, D.; Wedge, D.E. Molluscicidal and antifungal activity of Erigeron speciosus steam distillate. Pest Manag. Sci.?2002, 58, 1043–1047, doi:10.1002/ps.542. 12400444
[51]
Meepagala, K.M. 2005. USDA, ARS NPURU, Oxford, MS, USA. Unpublished work.
[52]
Joshi, R.C.; Meepagala, K.M.; Sturtz, G.; Cagauan, A.G.; Mendoza, C.O.; Dayan, F.E.; Duke, S.O. Molluscicidal activity of vulgarone B from Artemisia douglasiana (Besser) against the invasive, alien, mollusc pest, Pomacea canaliculata (Lamarck). Int. J. Pest Manag.?2005, 51, 175–180, doi:10.1080/09670870500183161.
[53]
Meepagala, K.M. 2004. USDA, ARS NPURU, Oxford, MS, USA. Unpublished work.
[54]
Tucker, C.S. 2005. Mississippi State University, Stoneville, MS, USA. Unpublished work.
[55]
Schrader, K.K.; de Regt, M.Q.; Tucker, C.S.; Duke, S.O. A rapid bioassay for selective algicides. Weed Technol.?1997, 11, 767–774.
[56]
Schrader, K.K.; Duke, S.O.; Kingsbury, S.K.; Tucker, C.S.; Duke, M.V.; Dionigi, C.P.; Millie, D.F.; Zimba, P.V. Evaluation of ferulic acid for controlling the musty-odor cyanobacterium, Oscillatoria perornata, in aquaculture ponds. J. Appl. Aquacult.?2000, 10, 1–16.
[57]
Schrader, K.K.; de Regt, M.Q.; Tidwell, P.R.; Tucker, C.S.; Duke, S.O. Selective growth inhibition of the musty-odor producing cyanobacterium Oscillatoria cf. chalybea by natural compounds. Bull. Environ. Contam. Toxicol.?1998, 60, 651–658, doi:10.1007/s001289900676. 9557207
[58]
Schrader, K.K.; Nanayakkara, N.P.D. Selective algaecides for control of cyanochloronta. U.S. Patent 6,949,250,27, 27 September 2005.
[59]
Schrader, K.K.; Nanayakkara, N.P.D.; Tucker, C.S.; Rimando, A.M.; Ganzera, M.; Schaneberg, B.T. Novel derivatives of 9,10-anthraquinone are selective algicides against the musty-odor cyanobacterium Oscillatoria perornata. Appl. Environ. Microbiol.?2003, 69, 5319–5327, doi:10.1128/AEM.69.9.5319-5327.2003. 12957919
[60]
Schrader, K.K.; Foran, C.M.; Holmes, B.D.; Schlenk, D.K.; Nanayakkara, N.P.D.; Schaneberg, B.T. Toxicological evaluation of two anthraquinone-based cyanobactericides to channel catfish. N. Am. J. Aquacult.?2004, 66, 119–124, doi:10.1577/A03-036.1.
[61]
Cutler, H.G.; Cutler, S.J.; Wright, D.; Dawson, R. Methods of controlling zoological and aquatic plant growth. U.S. Patent 6,340,468,22, 22 January 2002.
[62]
Schrader, K.K.; Rimando, A.M.; Tucker, C.S.; Glinski, J.; Cutler, S.J.; Cutler, H.G. Evaluation of the natural product SeaKleen? for controlling the musty-odor-producing cyanobacterium Oscillatoria perornata in catfish ponds. N. Am. J. Aquacult.?2004, 66, 20–28, doi:10.1577/A03-026.
[63]
Wedge, D.E.; Duke, S.O. Finding new fungicides from natural sources. Am. Chem. Soc. Symp. Ser.?2006, 927, 152–167.
[64]
Engelmeier, D.; Hadacek, F. Antifungal natural products: Assays and applications. In Advances in Phytomedicine, Naturally Occurring Bioactive Compounds; Ashok, K., Ed.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 3, pp. 423–467.
[65]
Kim, B.S.; Hwang, B.K. Microbial fungicides in the control of plant diseases. J. Phytopathol.?2007, 155, 641–653, doi:10.1111/j.1439-0434.2007.01314.x.
[66]
Sauter, H.; Ammermann, E.; Roehl, F. Strobilurins- From natural products to a new class of fungicides. In Crop Protection Agents from Nature: Natural Products and Analogues; Copping, L.G., Ed.; Royal Soc. Chem.: Cambridge, UK, 1996; pp. 50–81.
[67]
Bang, K.-H.; Lee, D.-W.; Park, H.-M.; Rhee, Y.-H. Inhibition of fungal cell wall synthesizing enzymes by trans-cinnamaldehyde. Biosci. Biotech. Biochem.?2000, 64, 1061–1063, doi:10.1271/bbb.64.1061.
[68]
Kang, T.H.; Hwang, E.I.; Yun, B.S.; Park, K.D.; Kwon, B.M.; Shin, C.S.; Kim, S.U. Inhibition of chitin synthases and antifungal activities of 2’-benzolyoxycinnamaldehyde from Pleuropterus ciliinervis and its derivatives. Biol. Pharm. Bull.?2007, 30, 598–602, doi:10.1248/bpb.30.598. 17329866
[69]
Wedge, D.E.; Nagle, D.G. Preparation of sampangine and its analogs as fungicides. U.S. Pat. Appl. Publ. CODEN: USXXCO US 2004192721 A1 20040930 CAN 141:273006 AN 2004:803936, 2004.
[70]
Li, X.-C.; Jacob, M.B.; Wedge, D.E. Preparation of cyclopentenedione antifungal compounds. U.S. Pat. Appl. Publ. CODEN: USXXCO US 2005215648 A1 20050929, 2005.
[71]
Cantrell, C.L.; Schrader, K.K.; Mamonov, L.K.; Sitpaeva, G.T.; Kustova, T.S.; Dunbar, C.; Wedge, D.E. Isolation and identification of antifungal and antialgal alkaloids from Haplophyllum sieversii. J. Agric. Food Chem.?2005, 53, 7741–7748, doi:10.1021/jf051478v. 16190626
[72]
Cantrell, C.L.; Case, B.P.; Mena, E.E.; Kniffin, T.M.; Duke, S.O.; Wedge, D.E. Isolation and identification of antifungal fatty acids from the basidiomycete Gomphus floccosus. J. Agric. Food Chem?2008, 56, 5062–5068, doi:10.1021/jf8008662. 18557621
[73]
Fokialakis, N.; Cantrell, C.L.; Duke, S.O.; Skaltsounis, A.L.; Wedge, D.E. Antifungal activity of thiophenes from Echinops ritro. J. Agric. Food Chem.?2006, 54, 1651–1655, doi:10.1021/jf052702j. 16506815
[74]
Abril, M.; Curry, K.J.; Smith, B.J.; DeLucca, A.J.; Boue, S.; Wedge, D.E. Greenhouse and field evaluation of the natural saponin CAY-1, for control of several strawberry diseases. Int. J. Fruit Sci.?2008, 9, 211–220.