Anthrax edema toxin (ET), a powerful adenylyl cyclase, is an important virulence factor of Bacillus anthracis. Until recently, only a modest amount of research was performed to understand the role this toxin plays in the organism’s immune evasion strategy. A new wave of studies have begun to elucidate the effects this toxin has on a variety of host cells. While efforts have been made to illuminate the effect ET has on cells of the adaptive immune system, such as T cells, the greatest focus has been on cells of the innate immune system, particularly the macrophage. Here we discuss the immunoevasive activities that ET exerts on macrophages, as well as new research on the effects of this toxin on B cells.
References
[1]
Scobie, H.; Rainey, G.; Bradley, K.; Young, J. Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor. Proc. Natl. Acad. Sci. USA?2003, 100, 5170–5174.
[2]
Bradley, K.; Mogridge, J.; Mourez, M.; Collier, R.; Young, J. Identification of the cellular receptor for anthrax toxin. Nature?2001, 414, 225–229.
[3]
Cataldi, A.; Labruyere, E.; Mock, M. Construction and characterization of a protective antigen-deficient Bacillus anthracis strain. Mol. Microbiol.?1990, 4, 1111–1117.
[4]
Pezard, C.; Duflot, E.; Mock, M. Construction of Bacillus anthracis mutant strains producing a single toxin component. J. Gen. Microbiol.?1993, 139, 2459–2463.
[5]
Heninger, S.; Drysdale, M.; Lovchik, J.; Hutt, J.; Lipscomb, M.F.; Koehler, T.M.; Lyons, C.R. Toxin-deficient mutants of Bacillus anthracis are lethal in a murine model for pulmonary anthrax. Infect. Immun.?2006, 74, 6067–6074.
[6]
Welkos, S.L.; Vietri, N.J.; Gibbs, P.H. Non-toxigenic derivatives of the Ames strain of Bacillus anthracis are fully virulent for mice: role of plasmid pX02 and chromosome in strain-dependent virulence. Microb. Pathog.?1993, 14, 381–388.
[7]
Brachman, P.; Friedlander, A. Anthrax. In Vaccines, 3rd; Plotkin, S., Orenstein, W., Eds.; WB Saunders Co: Philadelphia, PA, USA, 1999; pp. 629–637.
[8]
Lebowich, R.J.; McKillip, B.G.; Conboy, J.R. Cutaneous anthrax: a pathological study with clinical correlation. Am. J. Clin. Pathol.?1943, 13, 505–515.
[9]
Beatty, M.E.; Ashford, D.A.; Griffin, P.M.; Tauxe, R.V.; Sobel, J. Gastrointestinal anthrax: Review of the literature. Arch. Intern. Med.?2003, 163, 2527–2531.
[10]
Glomski, I.; Piris-Gimenez, A.; Huerre, M.; Mock, M.; Goossens, P. Primary involvement of pharynx and Peyer’s patch in inhalational and intestinal anthrax. PLoS Pathog.?2007, 3, e76.
[11]
Chakrabarty, K.; Wu, W.; Booth, J.; Duggan, E.; Coggeshall, K.; Metcalf, J. Bacillus anthracis spores stimulate cytokine and chemokine innate immune responses in human alveolar macrophages through multiple mitogen-activated protein kinase pathways. Infect. Immun.?2006, 74, 4430–4438.
[12]
Cleret, A.; Quesnel-Hellmann, A.; Vallon-Eberhard, A.; Verrier, B.; Jung, S.; Vidal, D.; Mathieu, J.; Tournier, J. Lung dendritic cells rapidly mediate anthrax spore entry through the pulmonary route. J. Immunol.?2007, 178, 7994–8001.
[13]
Vitale, G.; Bernardi, L.; Napolitano, G.; Mock, M.; Montecucco, C. Susceptibility of mitogen- activated protein kinase kinase family members to proteolysis by anthrax lethal factor. Biochem. J.?2000, 352, 739–745.
[14]
Kirby, J. Anthrax lethal toxin induces human endothelial cell apoptosis. Infect. Immun.?2004, 72, 430–439.
[15]
Friedlander, A.; Bhatnagar, R.; Leppla, S.; Johnson, L.; Singh, Y. Characterization of macrophage sensitivity and resistance to anthrax lethal toxin. Infect. Immun.?1993, 61, 245–252.
Molin, F.D.; Fasanella, A.; Simonato, M.; Garofolo, G.; Montecucco, C.; Tonello, F. Ratio of lethal and edema factors in rabbit systemic anthrax. Toxicon?2008, 52, 824–828.
[20]
Leppla, S. Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc. Natl. Acad. Sci. USA?1982, 79, 3162–3166.
[21]
Drum, C.L.; Yan, S.Z.; Bard, J.; Shen, Y.Q.; Lu, D.; Soelaiman, S.; Grabarek, Z.; Bohm, A.; Tang, W.J. Structural basis for the activation of anthrax adenylyl cyclase exotoxin by calmodulin. Nature?2002, 415, 396–402, doi:10.1038/415396a. 11807546
[22]
Leppla, S. Bacillus anthracis calmodulin-dependent adenylate cyclase: chemical and enzymatic properties and interactions with eukaryotic cells. In Advances in Cyclic Nucleotide and Protein Phosphorylation Research; Greengard, P., Robinson, B.A., Eds.; Raven Press: New York, NY, USA, 1984; pp. 189–198.
[23]
Tang, W.; Krupinski, J.; Gilman, A. Expression and characterization of calmodulin-activated (type 1) adenylyl cyclases. J. Biol. Chem.?1991, 266, 8595–8603.
[24]
Ahuja, N.; Kumar, P.; Bhatnagar, R. The adenylate cyclase toxins. Crit. Rev. Microbiol.?2004, 30, 187–196.
Hong, J.; Doebele, R.; Lingen, M.; Quilliam, L.; Tang, W.; Rosner, M. Anthrax edema toxin inhibits endothelial cell chemotaxis via Epac and Rap1. J. Biol. Chem.?2007, 282, 19781–19787.
[27]
Comer, J.E.; Chopra, A.K.; Peterson, J.W.; Konig, R. Direct inhibition of T-lymphocyte activation by anthrax toxins in vivo. Infect. Immun.?2005, 73, 8275–8281.
Puhar, A.; Molin, F.D.; Horvath, S.; Ladants, D.; Montecucco, C. Anthrax edema toxin modulates PKA- and CREB-dependent signaling in two phases. PLoS One?2008, 3, e3564.
[32]
Paccani, S.R.; Tonello, F.; Patrussi, L.; Capitani, N.; Simonato, M.; Montecucco, C.; Baldari, C. Anthrax toxins inhibit immune cell chemotaxis by perturbing chemokine receptor signaling. Cell. Microbiol.?2007, 9, 924–929.
[33]
Kim, C.; Wilcox-Adelman, S; Sano, Y.; Tang, W.; Collier, R.J.; Park, J. Anti-inflammatory cAMP signaling and cell migration genes co-opted by the anthrax bacillus. Proc. Natl. Acad. Sci. USA?2008, 105, 6150–6155.
Xu, L.; Frucht, D. Bacillus anthracis: a multi-faceted role for anthrax lethal toxin in thwarting host immune defenses. Int. J. Biochem. Cell. Biol.?2007, 39, 20–24.
[36]
Turk, B.E. Manipulation of host signaling pathways by anthrax toxins. Biochem. J.?2007, 402, 405–417.
[37]
Cote, C.K.; Rea, K.M.; Norris, S.L.; van Rooijen, N.; Welkos, S.L. The use of a model of in vivo macrophage depletion to study the role of macrophages during infection with Bacillus anthracis spores. Microb. Pathog.?2004, 37, 169–175.
[38]
Cote, C.; Van Rooijen, N.; Welkos, S. Roles of macrophages and neutrophils in the early host response to Bacillus anthracis spores in a mouse model of infection. Infect. Immun.?2006, 74, 469–480.
[39]
Cote, C.; DiMezzo, T.; Banks, D.; France, B.; Bradley, K.; Welkos, S. Early interactions between fully virulent Bacillus anthracis and macrophages that influence the balance between spore clearance and development of a lethal infection. Microb. Infect.?2008, 10, 613–619.
Banks, D.; Barnajian, B.; Maldonado-Arocho, F.; Sanchez, A.; Bradley, K. Anthrax toxin receptor 2 mediates Bacillus anthracis killing of macrophages following spore challenge. Cell. Microbiol.?2005, 7, 1173–1185.
[42]
Park, J.M.; Greten, F.R.; Wong, A.; Westrick, R.J.; Arthur, J.S.C.; Otsu, K.; Hoffmann, A.; Montminy, M.; Karin, M. Signaling pathways and genes that inhibit pathogen-induced macrophage apoptosis-CREB and NF-kappaβ as key regulators. Immunity?2005, 23, 319–329.
[43]
de Rooij, J.; Zwartkruis, F.J.; Verheijen, M.H.; Cool, R.H.; Nijman, S.M.; Wittinghofer, A.; Bos, J.L. Epac is a Rap1 guanine-nucleotide exchange factor directly activated by cyclic AMP. Nature?1998, 396, 474–477.
[44]
Kawasaki, H.; Springett, G.M.; Mochizuki, N.; Toki, S.; Nakaya, M.; Matsuda, M.; Housman, D.E.; Graybiel, A.M. A family of cAMP binding proteins that directly activate Rap1. Science?1998, 282, 2275–2279.
[45]
Yeager, L.A.; Chopra, A.K.; Peterson, J.W. Bacillus anthracis edema toxin suppresses human macrophage phagocytosis and cytoskeletal remodeling via the Protein Kinase A and Exchange Protein Activated by cyclic AMP pathways. Infect. Immun.?2009, 77, 2530–2543.
[46]
Kumar, P.; Ahuja, N.; Bhatnagar, R. Anthrax edema toxin requires influx of calcium for inducing cyclic AMP toxicity in target cells. Infect. Immun.?2002, 70, 4997–5007.
[47]
Voth, D.; Hamm, E.; Nguyen, L.; Tucker, A.; Salles, I.; Ortiz-Leduc, O.; Ballard, J. Bacillus anthracis oedema toxin as a cause of tissue necrosis and cell type-specific cytotoxicity. Cell. Microbiol.?2005, 7, 1139–1149.
[48]
Firoved, A.M.; Miller, G.F.; Moayeri, M.; Kakkar, R.; Shen, Y.; Wiggins, J.F.; McNally, E.M.; Tang, W.J.; Leppla, S.H. Bacillus anthracis edema toxin causes extensive tissue lesions and rapid lethality in mice. Am. J. Pathol.?2005, 167, 1309–1320.
[49]
O’Brien, J.; Friedlander, A.; Dreier, T.; Ezzell, J.; Leppla, S. Effects of anthrax toxin components on human neutrophils. Infect. Immun.?1985, 47, 306–310.
[50]
Shen, Y.; Zhukovskaya, N.; Zimmers, M.; Soelaiman, S.; Bergson, P.; Wang, C.; Gibbs, C.; Tang, W. Selective inhibition of anthrax edema factor by adefovir, a drug for chronic hepatitis B virus infection. Proc. Natl. Acad. Sci. USA?2004, 101, 3242–3247.
[51]
Bailly, S.; Ferrua, B.; Fay, M.; Gougerot, P.M. Differential regulation of IL-6, IL-1 alpha, IL-1 beta and TNF alpha production in LPS-stimulated human monocytes: role of cyclic AMP. Infect. Immun.?1994, 62, 4432–4439.
[52]
Hart, P.H.; Whitty, G.A.; Piccoli, S.; Hamilton, J.A. Control by IFN-γ and PGE2 of TNFα and IL-1 production by human monocytes. Immunology?1989, 66, 376–383.
[53]
Hoover, D.; Firedlander, A.; Rogers, L.; Yoon, I. Anthrax edema toxin differentially regulates LPS-induced monocyte production of tumor necrosis factor alpha and interleukin-6 by increasing intracellular cAMP. Infect. Immun.?1994, 62, 4432–4439.
[54]
Bermudez, L.E.; Young, L.S. Tumor necrosis factor, alone or in combination with IL-2, but not IFN-gamma, is associated with macrophage killing of Mycobacterium avium complex. J. Immunol.?1988, 140, 3006–3013.
[55]
Cross, A.S.; Sadoff, J.C.; Kelly, N.; Bernton, E.; Gemski, P. Pretreatment with recombinant murine tumor necrosis factor alpha/cachectin and murine interleukin 1 alpha protects mice from lethal bacterial infection. J. Exp. Med.?1989, 169, 2021–2027.
[56]
Pezard, C.; Berche, P.; Mock, M. Contribution of individual toxin components to virulence of Bacillus anthracis. Infect. Immun.?1991, 59, 3472–3477.
[57]
Fang, H.; Xu, L.; Chen, T.Y.; Cyr, J.M.; Frucht, D.M. Anthrax lethal toxin has direct and potent inhibitory effects on B cell proliferation and immunoglobulin production. J. Immunol.?2006, 176, 6155–6161.
[58]
Lomo, J.; Blomhoff, H.K.; Beiske, K.; Stokke, T.; Smeland, E.B. TGF-beta 1 and cyclic AMP promote apoptosis in resting human B lymphocytes. J. Immunol.?1995, 154, 1634–1643.
[59]
Okada, T.; Cyster, J.G. B cell migration and interactions in the early phase of antibody responses. Curr. Opin. Immunol.?2006, 18, 278–285.
[60]
Reif, K.; Ekland, E.H.; Ohl, L.; Nakano, H.; Lipp, M.; Forster, R.; Cyster, J.G. Balanced responsiveness to chemoattractants from adjacent zones determines B-cell position. Nature?2002, 416, 94–99.
[61]
Okada, T.; Ngo, V.N.; Ekland, E.H.; Forster, R.; Lipp, M.; Littman, D.R.; Cyster, J.G. Chemokine requirements for B cell entry to lymph nodes and Peyer's patches. J. Exp. Med.?2002, 196, 65–75, doi:10.1084/jem.20020201. 12093871
[62]
Krzysiek, R.; Lefevre, E.A.; Zou, W.; Foussat, A.; Bernard, J.; Portier, A.; Galanaud, P.; Richard, Y. Antigen receptor engagement selectively induces macrophage inflammatory protein-1 alpha (MIP-1 alpha) and MIP-1 beta chemokine production in human B cells. J. Immunol.?1999, 162, 4455–4463.
[63]
Zhang, Y.; Lin, J.X.; Vilcek, J. Synthesis of interleukin 6 (interferon-beta 2/B cell stimulatory factor 2) in human fibroblasts is triggered by an increase in intracellular cyclic AMP. J. Biol. Chem.?1988, 263, 6177–6182.
[64]
Orlikowsky, T.W.; Dannecker, G.E.; Spring, B.; Eichner, M.; Hoffmann, M.K.; Poets, C.F. Effect of dexamethasone on B7 regulation and T cell activation in neonates and adults. Pediatr. Res.?2005, 57, 656–661.
[65]
Wortis, H.H.; Teutsch, M.; Higer, M.; Zheng, J.; Parker, D.C. B-cell activation by crosslinking of surface IgM or ligation of CD40 involves alternative signal pathways and results in different B-cell phenotypes. Proc. Natl. Acad. Sci. USA?1995, 92, 3348–3352.