Molecularly imprinted polymers (MIPs) are considered as polymeric materials that mimic the functionality of antibodies. MIPs have been utilized for a wide variety of applications in chromatography, solid phase extraction, immunoassays, and sensor recognition. In this article, recent advances of MIPs for the extraction and analysis of ochratoxins are discussed. Selection of functional monomers to bind ochratoxin A (OTA) with high affinities, optimization of extraction procedures, and limitations of MIPs are compared from different reports. The most relevant examples in the literature are described to clearly show how useful these materials are. Strategies on MIP preparation and schemes of analytical methods are also reviewed in order to suggest the next step that would make better use of MIPs in the field of ochratoxin research. The review ends by outlining the remaining issues and impediments.
References
[1]
Sellergren, B. Molecularly Imprinted Polymers—Man-Made Mimics of Antibodies and Their Application in Analytical Chemistry; Elsevier: Amsterdam, The Netherland, 2001.
[2]
Mayes, A.G.; Mosbach, K. Molecularly imprinted polymers: useful materials for analytical chemistry? Trends Anal. Chem.?1997, 16, 321–332, doi:10.1016/S0165-9936(97)00037-X.
[3]
Haupt, K.; Mosbach, K. Molecularly imprinted polymers and their use in biomimetic sensors. Chem. Rev.?2000, 100, 2495–2504.
[4]
Mahony, J.O.; Nolan, K.; Smyth, M.R.; Mizaikoff, B. Molecularly imprinted polymers--potential and challenges in analytical chemistry. Anal. Chim. Acta?2005, 534, 31–39.
[5]
Wulff, G. Molecular imprinting in cross-linked materials with the aid of molecular templates - a way towards artificial antibodies. Angew. Chem. Int. Ed.?1995, 34, 1812–1832.
[6]
Sellergren, B. Noncovalent molecular imprinting: antibody like molecular recognition in polymeric network materials. Trends Anal. Chem.?1997, 16, 310–320.
[7]
Holthoff, E.L.; Bright, F.V. Molecularly templated materials in chemical sensing. Anal. Chim. Acta?2007, 594, 147–161.
[8]
Li, Y.; Li, X.; Li, Y.; Qi, J.; Bian, J.; Yuan, Y. Selective removal of 2,4-dichlorophenol from contaminated water using non-covalent imprinted microspheres. Environ. Pollut.?2009, 157, 1879–1885.
[9]
Reddy, P.S.; Kobayashi, T.; Abe, M.; Fujii, N. Molecular imprinted Nylon-6 as a recognition material of amino acids. Eur. Polym. J.?2002, 38, 521–529.
[10]
Li, X.; Husson, S.M. Adsorption of dansylated amino acids on molecularly imprinted surfaces: A surface plasmon resonance study. Biosens. Bioelectron.?2006, 22, 336–348.
[11]
Navarro-Villoslada, F.; Urraca, J.L.; Moreno-Bondi, M.C.; Orellana, G. Zearalenone sensing with molecularly imprinted polymers and tailored fluorescent probes. Sens. Actuat. B?2007, 121, 67–73.
[12]
Lin, C.I.; Joseph, A.K.; Chang, C.K.; Lee, Y.D. Molecularly imprinted polymeric film on semiconductor nanoparticles Analyte detection by quantum dot photoluminescence. J. Chromatogr. A?2004, 1027, 259–262, doi:10.1016/j.chroma.2003.10.037. 14971510
[13]
Panasyuk, T.L.; Mirsky, V.M.; Piletsky, S.A.; Wolfbeis, O.S. Electropolymerized molecularly imprinted polymers as receptor layers in capacitive chemical sensors. Anal. Chem.?1999, 71, 4609–4613.
[14]
Farre, M.; Martinez, E.; Barcelu, D.; Yolanda, P. Sensor, Biosensors and MIP Based Sensors in Food Toxicants Analysis; Elsevier: Amsterdam, The Netherland, 2007; pp. 599–636.
[15]
Farre, M.; Martinez, E.; Barcelu, D.; Yolanda, P. Immunochemical and Receptor Technologies: The Role of Immunoassay, Immunoaffinity Chromatography, Immunosensors and Molecularly Imprinted Polymeric Sensors. In Food Contaminants and Residue Analysis, Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherland, 2008; Volume 51 Chapter 4, pp. 91–130.
[16]
Vonderheide, A.P.; Boyd, B.; Ryberg, A.; Yilmaz, E.; Hieber, T.E.; Kauffman, P.E.; Garris, S.T.; Morgan, J.N. Analysis of permethrin isomers in composite diet samples by molecularly imprinted solid-phase extraction and isotope dilution gas chromatography-ion trap mass spectrometry. J. Chromatogr. A?2009, 1216, 4633–4640. 19393156
[17]
Bolisay, L.D.; Culver, J.N.; Kofinas, P. Molecularly imprinted polymers for tobacco mosaic virus recognition. Biomaterials?2006, 27, 4165–4168.
[18]
Caro, E.; Marce, R.M.; Borrull, F.; Cormack, P.A.G.; Sherrington, D.C. Application of molecularly imprinted polymers to solid-phase extraction of compounds from environmental and biological samples. Trends Anal. Chem.?2006, 25, 143–154.
[19]
Scott, P.M. Mycotoxins in Grain-Compounds Other than Aflatoxin; Miller, J.D., Trenholm, H.L., Eds.; Eagan Press: Saint Paul, MN, USA, 1997; p. 261.
[20]
Medina, A.; Mateo, E.M.; Valle-Algarra, F.M.; Mateo, F.; Mateo, R.; Misericordia, J. Influence of nitrogen and carbon sources on the production of ochratoxin A by ochratoxigenic strains of Aspergillus spp. isolated from grapes. Int. J. Food Microbiol.?2008, 122, 93–99, doi:10.1016/j.ijfoodmicro.2007.11.055. 18164776
[21]
Brera, C.; De Santis, B.; Debegnach, F.; Miraglia, M.; Yolanda, P. Mycotoxins in Food Contaminants and Residue Analysis, Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherland, 2008; Volume 51, pp. 363–427.
[22]
Krogh, P. Mycotoxins in Food; Krogh, P., Ed.; Academic Press: London, UK, 1987; p. 97.
[23]
Pfohl-Leszkowicz, A.; Manderville, R.A. Ochratoxin A: An overview on toxicity and carcinogenicity in animals and humans. Mol. Nutr. Food Res.?2007, 51, 61–99.
[24]
Garcia-Fonseca, S.; Ballesteros-Gumez, A.; Rubio, S.; Perez-Bendito, D. Supramolecular solvent-based microextraction of Ochratoxin A in raw wheat prior to liquid chromatography/ fluorescence determination. J. Chromatogr. A?2009.
[25]
Varga, J.; Kozakiewicz, Z. Ochratoxin A in grapes and grape-derived products. Trends Food Sci. Technol.?2006, 17, 72–81.
[26]
Venncio, A.; Barkai-Golan, R.; Paster, N. Detection and determination of ochratoxin A in grape products in Mycotoxins in Fruits and Vegetables; Academic Press: San Diego, CA, USA, 2008; pp. 249–259.
[27]
Dall'Asta, C.; Galaverna, G.; Dossena, A.; Marchelli, R. Reversed-phase liquid chromatographic method for the determination of ochratoxin A in wine. J. Chromatogr. A?2004, 1024, 275–279, doi:10.1016/j.chroma.2003.10.025. 14753729
[28]
Ratola, N.; Barros, P.; Simies, T.; Cerdeira, A.; Venncio, A.; Alves, A. Worldwide interlaboratory study on the determination of ochratoxin A in different wine type samples. Talanta?2006, 70, 720–731, doi:10.1016/j.talanta.2006.05.031. 18970831
[29]
Garcìa-Fonseca, S.; Ballesteros-G?mez, A.; Rubio, S.; Pèrez-Bendito, D. Coacervative extraction of Ochratoxin A in wines prior to liquid chromatography/fluorescence determination. Anal. Chim. Acta?2008, 617, 3–10.
[30]
Walker, R. Risk assessment of ochratoxin: current views of the European Scientific Committee on Food, the JECFA and the Codex Committee on Food Additives and Contaminants. Adv. Exp. Med. Biol.?2002, 504, 249–255.
[31]
Scott, P. Biomarkers of human exposure to ochratoxin A. Food Add. Contam.?2005, Supplement 1, 99–107.
[32]
Turner, N.W.; Subrahmanyam, S.; Piletsky, S.A. Analytical methods for the determination of mycotoxins – a review. Anal. Chim. Acta?2009, 632, 168–180, doi:10.1016/j.aca.2008.11.010. 19110091
[33]
Visconti, A.; Pascale, M.; Centonze, G. Determination of ochratoxin A in wine by means of immunoaffinity column clean-up and high-performance liquid chromatography. J. Chromatogr. A?1999, 864, 89–101.
[34]
Sez, J.M.; Medina, A.; Gimeno-Adelantado, J.; Mateo, R.; Jimenez, M. Comparison of different sample treatments for the analysis of ochratoxin A in must, wine and beer by liquid chromatography. J. Chromatogr. A?2004, 1029, 125–133, doi:10.1016/j.chroma.2003.12.021. 15032357
[35]
Giraudi, G.; Anfossi, L.; Baggiani, C.; Giovannoli, C.; Tozzi, C. Solid-phase extraction of ochratoxin A from wine based on a binding hexapeptide prepared by combinatorial synthesis. J. Chromatogr. A?2007, 1175, 174–180, doi:10.1016/j.chroma.2007.10.057. 17996878
[36]
Hennion, M.C. Solid-phase extraction: method development, sorbents, and coupling with liquid chromatography. J. Chromatogr. A?1999, 856, 3–54.
[37]
Hennion, M.C.; Pichon, V. Immuno-based sample preparation for trace analysis. J. Chromatogr. A?2003, 1000, 29–52, doi:10.1016/S0021-9673(03)00529-6. 12877165
Yu, J.C.C. Development of polypyrrole films by electrochemical imprinting for molecular recognition of ochratoxin A: applications in surface plasmon resonance sensor and micro solid phase extraction. 2006. PhD thesis, Carleton University, Canada.
[40]
Cigi?, I.K.; Prosen, H. An overview of conventional and emerging analytical methods for the determination of mycotoxins. Int. J. Mol. Sci.?2009, 10, 62–115, doi:10.3390/ijms10010062. 19333436
[41]
Maier, N.M.; Buttinger, G.; Welhartizki, S.; Gavioli, E.; Lindner, W. Molecularly imprinted polymer-assisted sample clean-up of ochratoxin A from red wine: merits and limitations. J. Chromatogr. B?2004, 804, 103–111, doi:10.1016/j.jchromb.2004.01.014.
[42]
Appell, M.; Maragos, C.; Kendra, D. Molecularly imprinted polymers for mycotoxins. In Symposia on Mycotoxins and Food Allergens; American Chemical Society: Washington, D.C., USA, 2008; Chapter 8, pp. 152–169.
[43]
Zhang, X.; Cudjoe, E.; Vuckovic, D.; Pawliszyn, J. Direct monitoring of ochratoxin A in cheese with solid-phase microextraction coupled to liquid chromatography-tandem mass spectrometry. J. Chromatogr. A?2009, 1216, 7505–7509.
[44]
Lattanzio, V.M.T.; Pascale, M.; Visconti, A. Current analytical methods for trichothecene mycotoxins in cereals. Trends Anal. Chem.?2009, 28, 758–768.
[45]
Paddle, B.M. Biosensors for chemical and biological agents of defence interest. Biosens. Bioelectron.?1996, 11, 1079–1113.
[46]
Liang, H.J.; Ling, T.R.; Rick, J.F.; Chou, T.C. Molecularly imprinted electrochemical sensor able to enantroselectivly recognize D and L-tyrosine. Anal. Chim. Acta?2005, 542, 83–89.
[47]
Pérez, N.; Whitcombe, M.J.; Vulfson, E.N. Surface imprinting of cholesterol on submicrometer core-shell emulsion particles. Macromolecular?2001, 34, 830–836.
[48]
Yu, J.C.C.; Lai, E.P.C. Interaction of ochratoxin A with molecularly imprinted polypyrrole film on surface plasmon resonance sensor. React. Funct. Polym.?2005, 63, 171–176.
[49]
Prieto-Simun, B.; Noguer, T.; Camps, M. Emerging biotools for assessment of mycotoxins in the past decade. Trends Anal. Chem.?2007, 26, 689–702, doi:10.1016/j.trac.2007.05.012.
[50]
Yuan, J.; Deng, D.; Lauren, D.R.; Aguilar, M.I.; Wu, Y. Surface plasmon resonance biosensor for the detection of ochratoxin A in cereals and beverages. Anal. Chim. Acta?2009, 656, 63–71.
[51]
Mahony, J.O.; Nolan, K.; Smyth, M.R.; Mizaikoff, B. Molecularly imprinted polymers - potential and challenges in analytical chemistry. Anal. Chim. Acta?2005, 534, 31–39.
[52]
Monomers. Available online: http://www.sigmaaldrich.com/materials-science/material-science-products.html?TablePage=16390069 (accessed on 17 June 2010).
[53]
Cormack, P.A.G.; Elorza, A.Z. Molecularly imprinted polymers: synthesis and characterization. J. Chromatogr. B?2004, 804, 173–182.
[54]
Chen, W.Y.; Chen, C.S.; Lin, F.Y. Molecular recognition in imprinted polymers: thermodynamic investigation of analyte binding using microcalorimetry. J. Chromatogr. A?2001, 923, 1–6.
[55]
Spivak, D.A.; Simon, R.; Campbell, J. Evidence for shape selectivity in non-covalently imprinted polymers. Anal. Chim. Acta?2004, 504, 23–30.
[56]
Wulff, G. Molecular imprinting in cross-linked materials with the aid of molecular templates - a way towards artificial antibodies. Angew. Chem. Int. Ed. Engl.?1995, 34, 1812–1832.
[57]
Takeuchi, T.; Dobashi, A.; Kimura, K. Molecular imprinting of biotin derivatives and its application to competitive binding assay using nonisotopic labeled ligands. Anal. Chem.?2000, 72, 2418–2422.
[58]
Chianella, I.; Lotierzo, M.; Piletsky, S.A.; Tothill, I.E.; Chen, B.N.; Karim, K.; Turner, A.P.F. Rational design of a polymer specific for microcystin-LR using a computational approach. Anal. Chem.?2002, 74, 1288–1293.
[59]
Piletsky, S.A.; Karim, K.; Piletska, E.V.; Day, C.J.; Freebairn, K.W.; Legge, C.; Turner, A.P.F. Recognition of ephedrine enantiomers by molecularly imprinted polymers designed using a computational approach. Analyst?2001, 126, 1826–1830.
[60]
Wu, L.; Zhu, K.; Zhao, M.; Li, Y. Theoretical and experimental study of nicotinamide molecularly imprinted polymers with different porogens. Anal. Chim. Acta?2005, 549, 39–44.
[61]
Zhou, S.N.; Lai, E.P.C. N-phenylacrylamide functional polymer with high affinity for ochratoxin A. React. Funct. Polym.?2004, 58, 35–42, doi:10.1016/j.reactfunctpolym.2003.11.005.
[62]
Turner, N.W.; Piletska, E.V.; Karim, K.; Whitcombe, M.; Malecha, M.; Magan, N.; Baggiani, C.; Piletsky, S.A. Effect of the solvent on recognition properties of molecularly imprinted polymer specific for ochratoxin A. Biosens. Bioelectron.?2004, 20, 1060–1067.
[63]
Baggiani, C.; Giraudi, G.; Vanni, A. A molecular imprinted polymer with recognition properties towards the carcinogenic mycotoxin ochratoxin A. Bioseparation?2001, 10, 389–394.
[64]
Yu, J.C.C.; Lai, E.P.C. Molecularly imprinted polypyrrole modified carbon nanotubes on stainless steel frit for selective micro solid phase pre-concentration of ochratoxin A. React. Funct. Polym.?2006, 66, 702–711.
[65]
Yu, J.C.C.; Lai, E.P.C. Determination of ochratoxin A in red wines by multiple pulsed elutions from molecularly imprinted polypyrrole. Food Chem.?2007, 105, 301–310.
[66]
Yu, J.C.C.; Krushkova, S.; Lai, E.P.C.; Dabek-Zlotorzynska, E. Molecularly-imprinted polypyrrole-modified stainless steel frits for selective solid phase preconcentration of ochratoxin A. Anal. Bioanal. Chem.?2005, 381, 1534–1540.
[67]
Piletska, E.; Karim, K.; Coker, R.; Piletsky, S. Development of the custom polymeric materials specific for aflatoxin B1 and ochratoxin A for application with the ToxiQuant T1 sensor tool. J. Chromatogr. A?2009.
[68]
Yu, J.C.C.; Hrdina, A.; Mancini, C.; Lai, E.P.C. Molecularly imprinted polypyrrole encapsulated carbon nanotubes in stainless steel frit for micro solid phase extraction of estrogenic compounds. J. Nanosci. Nanotechnol.?2007, 7, 3095–3103.
[69]
Wei, Y.; Qiu, L.; Yu, J.C.C.; Lai, E.P.C. Molecularly imprinted solid phase extraction in a syringe needle packed with polypyrrole-encapsulated carbon nanotubes for determination of ochratoxin A in red wine. Food Sci. Technol. Int.?2007, 13, 375–380.
[70]
Zhang, X.; Kang, E.T.; Neoh, K.G.; Tan, K.L.; Kim, D.Y.; Kim, C.Y. Surface studies of pristine and surface-modified polypyrrole films. J. Appl. Polym. Sci.?1996, 60, 625–636.
[71]
Farrington, K.; Regan, F. Investigation of the nature of MIP recognition: The development and characterization of a MIP for Ibuprofen. Biosens. Bioelectron.?2007, 22, 1138–1146.
[72]
Karim, K.; Breton, F.; Rouillon, R.; Piletska, E.; Guerreiro, A.; Chianella, I.; Piletsky, S.A. How to find effective functional monomers for effective molecularly imprinted polymers? Adv. Drug Delivery Rev.?2005, 57, 1795–1808, doi:10.1016/j.addr.2005.07.013.
[73]
Wu, L.; Zhu, K.; Zhao, M.; Li, Y. Theoretical and experimental study of nicotinamide molecularly imprinted polymers with different porogens. Anal. Chim. Acta?2005, 549, 39–44.
[74]
Singh, B.; Chauhan, N. Preliminary evaluation of molecular imprinting of 5-fluorouracil within hydrogels for use as drug delivery systems. Acta Biomater.?2008, 4, 1244–1254.
[75]
Li, X.; Husson, S.M. Adsorption of dansylated amino acids on molecularly imprinted surfaces: A surface plasmon resonance study. Biosens. Bioelectron.?2006, 22, 336–348.
[76]
Pichon, V. Selective sample treatment using molecularly imprinted polymers. J. Chromatogr. A?2007, 1152, 41–53.
[77]
Mullett, W.M.; Lai, E.P.C. Rapid determination of theophylline in serum by selective extraction using a heated molecularly imprinted polymer micro-column with differential pulsed elution. J. Pharm. Biomed. Anal.?1999, 21, 835–843.
[78]
Haginaka, J. Selectivity of affinity media in solid-phase extraction of analytes. Trends Anal. Chem.?2005, 24, 407–415.
[79]
Luzi, E.; Minunni, M.; Tombelli, S.; Mascini, M. New trends in affinity sensing - aptamers for ligand binding. Trends Anal. Chem.?2003, 22, 810–818.
[80]
Naffin, J.L.; Han, Y.; Olivos, H.J.; Reddy, M.M.; Sun, T.; Kodadek, T. Immobilized peptides as high-affinity capture agents for self-associating proteins. Chem. Biol.?2003, 10, 251–259.
[81]
Feng, S.Y.; Lai, E.P.C.; Dabek-Zlotorzynska, E.; Sadeghi, S. Molecularly imprinted solid-phase extraction for the screening of antihyperglycemic biguanides. J. Chromatogr. A?2004, 1027, 155–160, doi:10.1016/j.chroma.2003.11.042. 14971497
[82]
Zhou, S.N.; Lai, E.P.C.; Miller, J.D. Analysis of wheat extracts for ochratoxin A by molecularly imprinted solid-phase extraction and pulsed elution. Anal. Bioanal. Chem.?2004, 378, 1903–1906.
[83]
Wu, S.G.; Lai, E.P.C.; Mayer, P.M. Molecularly imprinted solid phase extraction - pulsed elution - mass spectrometry for determination of cephalexin and a-aminocephalosporin antibiotics in human serum. J. Pharm. Biomed. Anal.?2004, 36, 483–490.
[84]
Liu, M.; Zeng, Z.; Fang, H. Preparation and application of the sol-gel-derived acrylate/silicone co-polymer coatings for headspace solid-phase microextraction of 2-chloroethyl ethyl sulfide in soil. J. Chromatogr. A?2005, 1076, 16–26, doi:10.1016/j.chroma.2005.04.025. 15974065
[85]
Turiel, E.; MartEsteban, A. Molecularly imprinted polymers for solid-phase microextraction. J. Sep. Sci.?2009, 32, 3278–3284.
[86]
Tamayo, F.G.; Turiel, E.; Martin-Esteban, A. Molecularly imprinted polymers for solid-phase extraction and solid-phase microextraction: Recent developments and future trends. J. Chromatogr. A?2007, 1152, 32–40, doi:10.1016/j.chroma.2006.08.095. 17010356
[87]
Jodlbauer, J.; Maier, N.M.; Lindner, W. Towards ochratoxin A selective molecularly imprinted polymers for solid-phase extraction. J. Chromatogr. A?2002, 945, 45–63.
[88]
Turiel, E.; Martin-Esteban, A. Molecularly imprinted polymers: towards highly selective stationary phases in liquid chromatography and capillary electrophoresis. Anal. Bioanal. Chem.?2004, 378, 1876–1886.
[89]
Liu, Z.H.; Xu, Y.L.; Yan, C.; Gao, R.U. Mechanism of molecular recognition on molecular imprinted monolith by capillary electrochromatography. J. Chromatogr. A?2005, 1087, 20–28, doi:10.1016/j.chroma.2005.05.107. 16130693
[90]
Ye, L.; Mosbach, K. Molecularly imprinted microspheres as antibody binding mimics. React. Funct. Polym.?2001, 48, 149–157.
[91]
Mayes, A.G.; Mosbach, K. Molecularly imprinted polymer beads: suspension polymerization using a liquid perfluorocarbon as the dispersing phase. Anal. Chem.?1996, 68, 3769–3774.
Yoshimatsu, K.; Reimhult, K.; Krozer, A.; Mosbacha, K.; Sode, K.; Ye, L. Uniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization: The control of particle size suitablefor different analytical applications. Anal. Chim. Acta?2007, 584, 112–121.
[94]
Matsui, J.; Akamatsu, K.; Nishiguchi, S.; Miyoshi, D.; Nawafune, H.; Tamaki, K.; Sugimoto, N. Composite of Au nanoparticles and molecularly imprinted polymer as a sensing material. Anal. Chem.?2004, 76, 1310–1315.
[95]
Pavel, D.; Lagowski, J. Computationally designed monomers and polymers for molecular imprinting of theophylline and its derivatives. Part I. Polymer?2005, 46, 7528–7542, doi:10.1016/j.polymer.2005.04.099.
[96]
Pavel, D.; Lagowski, J. Computationally designed monomers and polymers for molecular imprinting of theophylline—part II. Polymer?2005, 46, 7543–7556.
[97]
Jodlbauer, J.; Maier, N.M.; Lindner, W. Towards ochratoxin a selective molecularly imprinted polymers for solid-phase extraction. J. Chromatogr. A?2002, 945 (1–2), 45–63, doi:10.1016/S0021-9673(01)01504-7. 11860145
[98]
Turner, N.W.; Piletska, E.V.; Karim, K.; Whitcombe, M.; Malecha, M.; Magan, N.; Baggiani, C.; Piletsky, S.A. Effect of the solvent on recognition properties of molecularly imprinted polymer specific for ochratoxin A. Biosens. Bioelectron.?2004, 20, 1060–1067.
[99]
Navarro-Villoslada, F.; Vicente, B.S.; Moreno-Bondi, M.C. Application of multivariate analysis to the screening of molecularly imprinted polymers for bisphenol A. Anal. Chim. Acta?2004, 504, 149–162.
[100]
Ringot, D.; Lerzy, B.; Bonhoure, J.P.; Auclair, E.; Oriol, E.; Larondelle, Y. Effect of temperature on in vitro ochratoxin A biosorption onto yeast cell wall derivatives. Process Biochem.?2005, 40, 3008–3016, doi:10.1016/j.procbio.2005.02.006.
[101]
Gallego-Gallegos, M.; Muòoz-Olivas, R.; Cmara, C. Different formats of imprinted polymers for determining organotin compounds in environmental samples. J. Environ. Manage.?2009, 90, S69–S76.
[102]
Wang, H.Y.; Jiang, J.G.; Ma, L.Y.; Pang, Y.L. Syntheses of molecularly imprinted polymers and their molecular recognition study for doxazosin mesylate. React. Funct. Polym.?2005, 64, 119–126.
[103]
Luo, W.; Zhu, L.; Yu, C.; Tang, H.; Yu, H.; Li, X.; Zhang, X. Synthesis of surface molecularly imprinted silica micro-particles in aqueous solution and the usage for selective off-line solid-phase extraction of 2,4-dinitrophenol from water matrices. Anal. Chim. Acta?2008, 618, 147–156.
Careri, M.; Bianchi, F.; Corradini, C. Recent advances in the application of mass spectrometry in food-related analysis. J. Chromatogr. A?2002, 970, 3–64.
[106]
Timperio, A.M.; Magro, P.; Chilosi, G.; Zolla, L. Assay of ochratoxin A in grape by high-pressure liquid chromatography coupled on line with an ESI-mass spectrometry. J. Chromatogr. B?2006, 832, 127–133.
[107]
Krska, R.; Welzig, E.; Boudra, H. Analysis of Fusarium toxins in feed. Anim. Feed Sci. Technol.?2007, 137, 241–246.
[108]
Reinsch, M.; T?pfer, A.; Lehmann, A.; Nehls, I. Determination of ochratoxin A in wine by liquid chromatography tandem mass spectrometry after combined anion-exchange/reversed-phase clean-up. Anal. Bioanal. Chem.?2005, 381, 1592–1595.
[109]
Kumar, V.; Basu, M.S.; Rajendran, T.P. Mycotoxin research and mycoflora in some commercially important agricultural commodities. Crop Prot.?2008, 27, 891–905.
[110]
Molecularly Imprinted Polymers (SupelMIP). Available online: http://www.sigmaaldrich.com/analytical-chromatography/sample-preparation/spe/supelmip.html (accessed on 17 June 2010).
[111]
O’Mahony, J.; Molinelli, A.; Nolan, K.; Smyth, M.R.; Mizaikoff, B. Towards the rational development of molecularly imprinted polymers: 1H NMR studies on hydrophobicity and ion-pair interactions as driving forces for selectivity. Biosens. Bioelectron.?2005, 20, 1884–1893.
[112]
González-Pe?as, E.; Leache, C.; Viscarret, M.; Pérez de Obanos, A.; Araguás, C.; López de Cerain, A. Determination of ochratoxin A in wine using liquid-phase microextraction combined with liquid chromatography with fluorescence detection. J. Chromatogr. A?2004, 1025, 163–168, doi:10.1016/j.chroma.2003.10.113. 14763800
[113]
Cozzini, P.; Ingletto, G.; Singh, R.; Dall’Asta, C. Mycotoxin detection plays cops and robbers: cyclodextrin chemosensors as specialized police. Int. J. Mol. Sci.?2008, 9, 2474–2494, doi:10.3390/ijms9122474. 19330087
[114]
Wang, J.; Guo, R.; Chen, J.; Zhang, Q.; Liang, X. Phenylurea herbicides-selective polymer prepared by molecular imprinting using N-(4-isopropylphenyl)-N'-butyleneurea as dummy template. Anal. Chim. Acta?2005, 540, 307–315.
[115]
Heurich, M. Development of an affinity sensor for ochratoxin A. January. Ph.D. thesis, Cranfield University, UK 2008.