Despite efforts to improve hygenic conditions and regulate food and drinking water safety, the enteric pathogens, Shiga toxin-producing Escherichia coli (STEC) and Shigella dysenteriae serotype 1 remain major public health concerns due to widespread outbreaks and the severity of extra-intestinal diseases they cause, including acute renal failure and central nervous system complications. Shiga toxins are the key virulence factors expressed by these pathogens mediating extra-intestinal disease. Delivery of the toxins to the endoplasmic reticulum (ER) results in host cell protein synthesis inhibition, activation of the ribotoxic stress response, the ER stress response, and in some cases, the induction of apoptosis. Intrinsic and/or extrinsic apoptosis inducing pathways are involved in executing cell death following intoxication. In this review we provide an overview of the current understanding Shiga toxin intracellular trafficking, host cellular responses to the toxin and ER stress-induced apoptosis with an emphasis on recent findings.
References
[1]
Proulx, F.; Tesh, V.L. Renal diseases in the Pediatric Intensive Care Unit: Thrombotic microangiopathy, hemolytic uremic syndrome, and thrombotic thrombocytopenic purpura. In Pediatric Critical Care Medicine: Basic Science and Clinical Evidence; Wheeler, D.S., Wong, H.R., Shanley, T.P., Eds.; Springer Verlag: London, UK, 2007; pp. 1189–1204.
Karch, H.; Tarr, P.I.; Bielaszewska, M. Enterohaemorrhagic Escherichia coli in human medicine. Int. J. Med. Microbiol.?2005, 295, 405–418, doi:10.1016/j.ijmm.2005.06.009. 16238016
[4]
Bale, J.F.; Brasher, C.; Siegler, R.L. CNS manifestations of the hemolytic-uremic syndrome. Relationship to metabolic alterations and prognosis. Am. J. Dis. Child.?1980, 134, 869–872. 7416114
Malyukova, I.; Murray, K.F.; Zhu, C.; Boedeker, E.; Kane, A.; Patterson, K.; Peterson, J.R.; Donowitz, M.; Kovbasnjuk, O. Macropinocytosis in Shiga toxin 1 uptake by human intestinal epithelial cells and transcellular transcytosis. Am. J. Physiol. Gastrointest. Liver Physiol.?2009, 296, G78–G92. 18974311
[7]
Fontaine, A.; Arondel, J.; Sansonetti, P.J. Role of Shiga toxin in the pathogenesis of bacillary dysentery, studied by using a Tox? mutant of Shigella dysenteriae 1. Infect. Immun.?1988, 56, 3099–3109. 3053452
[8]
Taylor, F.B.; Tesh, V.L.; DeBault, L.; Li, A.; Chang, A.C.K.; Kosanke, S.D.; Pysher, T.J.; Siegler, R.L. Characterization of the baboon responses to Shiga-like toxin: Descriptive study of a new primate model of toxic responses to Stx-1. Am. J. Path.?1999, 154, 1285–1299, doi:10.1016/S0002-9440(10)65380-1. 10233866
[9]
te Loo, D.M.W.M.; Monnens, L.A.H.; van der Velden, T.J.A.N.; Vermeer, M.A.; Preyers, F.; Demacker, P.N.M.; van den Heuvel, L.P.W.J.; van Hinsbergh, V.W.M. Binding and transfer of verocytotoxin by polymorphonuclear leukocytes in hemolytic uremic syndrome. Blood?2000, 95, 3396–3402. 10828021
[10]
Brigotti, M.; Carnicelli, D.; Ravanelli, E.; Barbieri, S.; Ricci, F.; Bontadini, A.; Tozzi, A.E.; Scavia, G.; Caprioli, A.; Tazzari, P.L. Interactions between Shiga toxins and human polymorphonuclear leukocytes. J. Leukoc. Biol.?2008, 84, 1019–1027, doi:10.1189/jlb.0308157. 18625912
[11]
Lingwood, C.A. Shiga toxin receptor glycolipid binding. Pathology and utility. In Methods in Molecular Medicine. E. coli Shiga Toxin Methods and Protocols; Philpott, D., Ebel, F., Eds.; Humana Press, Inc.: Totowa, NJ, USA, 2003; Volume 73, pp. 165–186.
[12]
Sandvig, K.; Grimmer, S.; Lauvrak, S.U.; Torgersen, M.L.; Skretting, G.; van Deurs, B.; Iversen, T.G. Pathways followed by ricin and Shiga toxin into cells. Histochem. Cell Biol.?2002, 117, 131–141, doi:10.1007/s00418-001-0346-2. 11935289
[13]
Johannes, L.; R?mer, W. Shiga toxins—From cell biology to biomedical applications. Nat. Rev. Microbiol.?2010, 8, 105–116. 20023663
[14]
Armstrong, G.D.; Fodor, E.; Vanmaele, R. Investigation of Shiga-like toxin binding to chemically synthesized oligosaccharide sequences. J. Infect. Dis.?1991, 164, 1160–1167, doi:10.1093/infdis/164.6.1160. 1659599
[15]
Armstrong, G.D.; McLaine, P.N.; Rowe, P.C. Clinical trials of Synsorb-Pk in preventing hemolytic-uremic syndrome. In Escherichia coli O157:H7 and Other Shiga toxin-producing E. coli Strains; Kaper, J.B., O'Brien, A.D., Eds.; ASM Press: Washington, DC, USA, 1998; pp. 374–384.
[16]
Trachtman, H.; Cnaan, A.; Christen, E.; Gibbs, K.; Zhao, S.; Acheson, D.W.K.; Weiss, R.; Kaskel, F.J.; Spitzer, A.; Hirschman, G.H. Effect of an oral Shiga toxin–binding agent on diarrhea-associated Hemolytic Uremic Syndrome in children: A randomized controlled trial. JAMA?2003, 290, 1337–1344, doi:10.1001/jama.290.10.1337. 12966125
[17]
Nishikawa, K.; Matsuoka, K.; Kita, E.; Okabe, N.; Mizuguchi, M.; Hino, K.; Miyazawa, S.; Yamasaki, C.; Aoki, J.; Takashima, S.; Yamakawa, Y.; Nishijima, M.; Terunuma, D.; Kuzuhara, H.; Natori, Y. A therapeutic agent with oriented carbohydrates for treatment of infections by Shiga toxin-producing Escherichia coli O157:H7. Proc. Natl. Acad. Sci. USA?2002, 99, 7669–7674, doi:10.1073/pnas.112058999. 12032341
[18]
Saenz, J.B.; Doggett, T.A.; Haslam, D.B. Identification and characterization of small molecules that inhibit intracellular toxin transport. Infect. Immun.?2007, 75, 4552–4561, doi:10.1128/IAI.00442-07. 17576758
[19]
Mukherjee, J.; Chios, K.; Fishwild, D.; Hudson, D.; O’Donnell, S.; Rich, S.M.; Donohue-Rolfe, A.; Tzipori, S. Production and characterization of protective human antibodies against Shiga toxin 1. Infect. Immun.?2002, 70, 5896–5899, doi:10.1128/IAI.70.10.5896-5899.2002. 12228326
[20]
Pinyon, R.A.; Paton, J.C.; Paton, A.W.; Botten, J.A.; Morona, R. Refinement of a therapeutic Shiga toxin—Binding probiotic for human trials. J. Infect. Dis.?2004, 189, 1547–1555, doi:10.1086/383417. 15116289
[21]
Strockbine, N.A.; Marques, L.R.M.; Newland, J.W.; Williams-Smith, H.; Holmes, R.K.; O'Brien, A.D. Two toxin-converting phages from Escherichia coli O157:H7 strain 933 encode antigenically distinct toxins with similar biologic activities. Infect. Immun.?1986, 53, 135–140. 3522426
[22]
Mellmann, A.; Bielaszewska, M.; Kock, R.; Friedrich, A.W.; Fruth, A.; Middendorf, B.; Harmsen, D.; Schmidt, M.A.; Karch, H. Analysis of collection of hemolytic uremic syndrome-associated enterohemorrhagic Escherichia coli. Emerg. Infect. Dis.?2008, 14, 1287–1290, doi:10.3201/eid1408.071082. 18680658
[23]
Jackson, M.P.; Newland, J.W.; Holmes, R.K.; O'Brien, A.D. Nucleotide sequence analysis of the structural genes for Shiga-like toxin I encoded by bacteriophage 933J from Escherichia coli. Microb. Pathog.?1987, 2, 147–153, doi:10.1016/0882-4010(87)90106-9. 3333796
[24]
Stein, P.E.; Boodhoo, A.; Tyrrell, G.J.; Brunton, J.L.; Read, R.J. Crystal structure of the cell-binding B oligomer of verotoxin-1 from E coli. Nature?1992, 355, 748–750, doi:10.1038/355748a0. 1741063
[25]
Fraser, M.E.; Chernaia, M.M.; Kozlov, Y.V.; James, M.N.G. Crystal structure of the holotoxin from Shigella dysenteriae at 2.5 ? resolution. Nat. Struct. Biol.?1994, 1, 59–64, doi:10.1038/nsb0194-59. 7656009
[26]
Fraser, M.E.; Fujinaga, M.; Cherney, M.M.; Melton-Celsa, A.R.; Twiddy, E.M.; O'Brien, A.D.; James, M.N.G. Structure of Shiga toxin type 2 (Stx2) from Escherichia coli O157:H7. J. Biol. Chem.?2004, 279, 27511–27517, doi:10.1074/jbc.M401939200. 15075327
[27]
Endo, Y.; Tsurugi, K.; Yutsudo, T.; Takeda, Y.; Ogasawara, T.; Igarashi, K. Site of action of a Vero toxin (VT2) from Escherichia coli O157:H7 and of Shiga toxin on eukaryotic ribosomes. RNA N-glycosidase activity of the toxins. Eur. J. Biochem.?1988, 171, 45–50, doi:10.1111/j.1432-1033.1988.tb13756.x. 3276522
[28]
Saxena, S.K.; O'Brien, A.D.; Ackerman, E.J. Shiga toxin, Shiga-like toxin II variant, and ricin are all single-site RNA N-glycosidases of 28 S RNA when microinjected into Xenopus oocytes. J. Biol. Chem.?1989, 264, 596–601. 2642481
[29]
Sandvig, K.; Olsnes, S.; Brown, J.E.; Petersen, O.W.; van Deurs, B. Endocytosis from coated pits of Shiga toxin: A glycolipid-binding protein from Shigella dysenteriae 1. J. Cell Biol.?1989, 108, 1331–1343, doi:10.1083/jcb.108.4.1331. 2564398
[30]
Sandvig, K.; Bergan, J.; Dyve, A.-B.; Skotland, T.; Torgersen, M.L. Endocytosis and retrograde transport of Shiga toxin. Toxicon?2009.
[31]
DeGrandis, S.; Law, H.; Brunton, J.; Gyles, C.; Lingwood, C.A. Globotetraosylceramide is recognized by the pig edema disease toxin. J. Biol. Chem.?1989, 264, 12520–12525. 2663859
[32]
Schweppe, C.H.; Bielaszewska, M.; Pohlentz, G.; Friedrich, A.W.; Büntemeyer, H.; Schmidt, M.A.; Kim, K.S.; Peter-Katalini?, J.; Karch, H.; Müthing, J. Glycosphingolipids in vascular endothelial cells: Relationship of heterogeneity in Gb3Cer/CD77 receptor expression with differential Shiga toxin 1 cytotoxicity. Glycoconj. J.?2008, 25, 291–304, doi:10.1007/s10719-007-9091-7. 18176841
[33]
Ling, H.; Boodhoo, A.; Hazes, B.; Cummings, M.D.; Armstrong, G.D.; Brunton, J.L.; Read, R.J. Structure of the Shiga-like toxin I B-pentamer complexed with an analogue of its receptor Gb3. Biochemistry?1998, 37, 1777–1788, doi:10.1021/bi971806n. 9485303
[34]
Bast, D.J.; Banerjee, L.; Clark, C.; Read, R.J.; Brunton, J.L. The identification of three biologically relevant globotriaosyl ceramide receptor binding sites on the Verotoxin 1 B subunit. Mol. Microbiol.?1999, 32, 953–960, doi:10.1046/j.1365-2958.1999.01405.x. 10361298
Okuda, T.; Tokuda, N.; Numata, S.; Ito, M.; Ohta, M.; Kawamura, K.; Wiels, J.; Urano, T.; Tajima, O.; Furukawa, K. Targeted disruption of Gb3/CD77 synthase gene resulted in the complete deletion of globo-series glycosphingolipids and loss of sensitivity to verotoxins. J. Biol. Chem.?2006, 281, 10230–10235, doi:10.1074/jbc.M600057200. 16476743
[37]
Saelinger, C.B. Receptors for bacterial toxins. In Bacterial Protein Toxins; Burns, D.L., Barbieri, J.T., Iglewski, B.H., Rappuoli, R., Eds.; ASM Press: Washington, DC, USA, 2003; pp. 131–148.
[38]
Binnington, B.; Lingwood, D.; Nutikka, A.; Lingwood, C.A. Effect of globotriaosyl ceramide fatty acid alpha-hydroxylation on the binding by verotoxin 1 and verotoxin 2. Neurochem. Res.?2002, 27, 807–813, doi:10.1023/A:1020261125008. 12374217
Arab, S.; Lingwood, C.A. Influence of phospholipid chain length on verotoxin/globotriaosyl ceramide binding in model membranes: comparison of a supported bilayer film and liposomes. Glycoconj. J.?1996, 13, 159–166, doi:10.1007/BF00731490. 8737240
[41]
Arab, S.; Lingwood, C.A. Intracellular targeting of the endoplasmic reticulum/nuclear envelope by retrograde transport may determine cell hypersensitivity to verotoxin via globotriaosyl ceramide fatty acid isoform traffic. J. Cell. Physiol.?1998, 177, 646–660, doi:10.1002/(SICI)1097-4652(199812)177:4<646::AID-JCP15>3.0.CO;2-B. 10092217
[42]
Schüller, S.; Frankel, G.; Phillips, A.D. Interaction of Shiga toxin from Escherichia coli with human intestinal epithelial cell lines and explants: Stx2 induces epithelial damage in organ culture. Cell. Microbiol.?2004, 6, 289–301, doi:10.1046/j.1462-5822.2004.00370.x. 14764112
[43]
Griener, T.P.; Mulvey, G.L.; Marcato, P.; Armstrong, G.D. Differential binding of Shiga toxin 2 to human and murine neutrophils. J. Med. Microbiol.?2007, 56, 1423–1430, doi:10.1099/jmm.0.47282-0. 17965340
[44]
Richardson, S.E.; Karmali, M.A.; Becker, L.E.; Smith, C.R. The histopathology of the hemolytic uremic syndrome associated with verocytotoxin-producing Escherichia coli infections. Hum. Pathol.?1988, 19, 1102–1108, doi:10.1016/S0046-8177(88)80093-5. 3047052
[45]
Habib, R. Pathology of the hemolytic uremic syndrome. In Hemolytic Uremic Syndrome and Thrombotic Thrombocytopenic Purpura; Kaplan, B.S., Trompeter, R.S., Moake, J.L., Eds.; Decker: New York, NY, USA, 1992; pp. 315–353.
[46]
Obrig, T.G.; Del Vecchio, P.J.; Brown, J.E.; Moran, T.P.; Rowland, B.M.; Judge, T.K.; Rothman, S.W. Direct cytotoxic action of Shiga toxin on human vascular endothelial cells. Infect. Immun.?1988, 56, 2373–2378. 3044997
[47]
Fujii, J.; Wood, K.; Matsuda, F.; Carneiro-Filho, B.A.; Schlegel, K.H.; Yutsudo, T.; Binnington-Boyd, B.; Lingwood, C.A.; Obata, F.; Kim, K.S.; Yoshida, S.; Obrig, T. Shiga toxin 2 causes apoptosis in human brain microvascular endothelial cells via C/EBP homologous protein. Infect. Immun.?2008, 76, 3679–3689, doi:10.1128/IAI.01581-07. 18541659
[48]
Obrig, T.G.; Louise, C.B.; Lingwood, C.A.; Boyd, B.; Barley-Maloney, L.; Daniel, T.O. Endothelial heterogeneity in Shiga toxin receptors and responses. J. Biol. Chem.?1993, 268, 15484–15488. 8340376
Sandvig, K. Shiga toxins. Toxicon?2001, 39, 1629–1635, doi:10.1016/S0041-0101(01)00150-7. 11595626
[51]
Sandvig, K.; Torgersen, M.L.; Engedal, N.; Skotland, T.; Iversen, T.G. Protein toxins from plants and bacteria: Probes for intracellular transport and tools in medicine. FEBS Lett.?2010.
[52]
Garred, ?.; Dubinina, E.; Holm, P.K.; Olsnes, S.; van Deurs, B.; Kozlov, J.V.; Sandvig, K. Role of processing and intracellular transport for optimal toxicity of Shiga toxin and toxin mutants. Exp. Cell Res.?1995, 218, 39–49, doi:10.1006/excr.1995.1128. 7737376
[53]
Garred, ?.; van Deurs, B.; Sandvig, K. Furin-induced cleavage and activation of Shiga toxin. J. Biol. Chem.?1995, 270, 10817–10821, doi:10.1074/jbc.270.18.10817. 7738018
[54]
Sandvig, K.; Prydz, K.; Ryd, M.; van Deurs, B. Endocytosis and intracellular transport of the glycolipid-binding ligand Shiga toxin in polarized MDCK cells. J. Cell Biol.?1991, 113, 553–562, doi:10.1083/jcb.113.3.553. 1901867
[55]
Lauvrak, S.U.; W?lchli, S.; Iversen, T.G.; Slagsvold, H.H.; Torgersen, M.L.; Spilsberg, B.; Sandvig, K. Shiga toxin regulates its entry in a Syk-dependent manner. Mol. Biol. Cell?2006, 17, 1096–1109. 16371508
[56]
Lauvrak, S.U.; Torgersen, M.L.; Sandvig, K. Efficient endosome-to-Golgi transport of Shiga toxin is dependent on dynamin and clathrin. J. Cell Sci.?2004, 117, 2321–2331, doi:10.1242/jcs.01081. 15126632
[57]
Falguières, T.; Mallard, F.; Baron, C.; Hanau, D.; Lingwood, C.; Goud, B.; Salamero, J.; Johannes, L. Targeting of Shiga toxin B-subunit to retrograde transport route in association with detergent-resistant membranes. Mol. Biol. Cell?2001, 12, 2453–2468. 11514628
[58]
Mallard, F.; Antony, C.; Tenza, D.; Salamero, J.; Goud, B.; Johannes, L. Direct pathway from early/recycling endosomes to the Golgi apparatus revealed through the study of Shiga toxin B-fragment transport. J. Cell Biol.?1998, 143, 973–990, doi:10.1083/jcb.143.4.973. 9817755
[59]
Natarajan, R.; Linstedt, A.D. A cycling cis-Golgi protein mediates endosome-to-Golgi traffic. Mol. Biol. Cell?2004, 15, 4798–4806, doi:10.1091/mbc.E04-05-0366. 15331763
[60]
Lombardi, P.; Mulder, M.; van der Boom, H.; Frants, R.R.; Havekes, L.M. Inefficient degradation of triglyceride-rich lipoprotein by HepG2 cells is due to a retarded transport to the lysosomal compartment. J. Biol. Chem.?1993, 268, 26113–26119. 8253728
[61]
Riederer, M.A.; Soldati, T.; Shapiro, A.D.; Lin, J.; Pfeffer, S.R. Lysosome biogenesis requires Rab9 function and receptor recycling from endosomes to the trans-Golgi network. J. Cell Biol.?1994, 125, 573–582, doi:10.1083/jcb.125.3.573. 7909812
[62]
Miwako, I.; Yamamoto, A.; Kitamura, T.; Nagayama, K.; Ohashi, M. Cholesterol requirement for cation-independent mannose 6-phosphate receptor exit from multivesicular late endosomes to the Golgi. J. Cell Sci.?2001, 114, 1765–1776. 11309206
[63]
Sandvig, K. Transport of toxins across intracellular membranes. In Bacterial Protein Toxins; Burns, D.L., Barbieri, J.T., Iglewski, B.H., Rappuoli, R., Eds.; ASM Press: Washington, DC, USA, 2003; pp. 157–172.
[64]
Saint-Pol, A.; Yelamos, B.; Amessou, M.; Mills, I.G.; Dugast, M.; Tenza, D.; Schu, P.; Antony, C.; McMahon, H.T.; Lamaze, C.; Johannes, L. Clathrin adaptor epsinR is required for retrograde sorting on early endosomal membranes. Dev. Cell?2004, 6, 525–538, doi:10.1016/S1534-5807(04)00100-5. 15068792
Johannes, L.; Goud, B. Facing inward from compartment shores: How many pathways were we looking for? Traffic?2000, 1, 119–123, doi:10.1034/j.1600-0854.2000.010204.x. 11208092
[67]
Del Nery, E.; Miserey-Lenkei, S.; Falguières, T.; Nizak, C.; Johannes, L.; Perez, F.; Goud, B. Rab6A and Rab6A' GTPases play non-overlapping roles in membrane trafficking. Traffic?2006, 7, 394–407, doi:10.1111/j.1600-0854.2006.00395.x. 16536738
[68]
Mallard, F.; Tang, B.L.; Galli, T.; Tenza, D.; Saint-Pol, A.; Yue, X.; Antony, C.; Hong, W.; Goud, B.; Johannes, L. Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform. J. Cell Biol.?2002, 156, 653–664, doi:10.1083/jcb.200110081. 11839770
[69]
Popoff, V.; Mardones, G.A.; Tenza, D.; Rojas, R.; Lamaze, C.; Bonifacino, J.S.; Raposo, G.; Johannes, L. The retromer complex and clathrin define an early endosomal retrograde exit site. J. Cell Sci.?2007, 120, 2022–2031, doi:10.1242/jcs.003020. 17550971
[70]
Bujny, M.V.; Popoff, V.; Johannes, L.; Cullen, P.J. The retromer component sorting nexin-1 is required for efficient retrograde transport of Shiga toxin from early endosome to the trans Golgi network. J. Cell Sci.?2007, 120, 2010–2021, doi:10.1242/jcs.003111. 17550970
[71]
Utskarpen, A.; Slagsvold, H.H.; Dyve, A.B.; Skanland, S.S.; Sandvig, K. SNX1 and SNX2 mediate retrograde transport of Shiga toxin. Biochem. Biophys. Res. Commun.?2007, 358, 566–570, doi:10.1016/j.bbrc.2007.04.159. 17498660
[72]
Jackson, M.E.; Simpson, J.C.; Girod, A.; Pepperkok, R.; Roberts, L.M.; Lord, J.M. The KDEL retrieval system is exploited by Pseudomonas exotoxin A, but not by Shiga-like toxin-1, during retrograde transport from the Golgi complex to the endoplasmic reticulum. J. Cell Sci.?1999, 112, 467–475. 9914159
[73]
White, J.; Johannes, L.; Mallard, F.; Girod, A.; Grill, S.; Reinsch, S.; Keller, P.; Tzschaschel, B.; Echard, A.; Goud, B.; Stelzer, E.H. Rab6 coordinates a novel Golgi to ER retrograde transport pathway in live cells. J. Cell Biol.?1999, 147, 743–760, doi:10.1083/jcb.147.4.743. 10562278
[74]
Girod, A.; Storrie, B.; Simpson, J.C.; Johannes, L.; Goud, B.; Roberts, L.M.; Lord, J.M.; Nilsson, T.; Pepperkok, R. Evidence for a COP-I-independent transport route from the Golgi complex to the endoplasmic reticulum. Nat. Cell Biol.?1999, 1, 423–430, doi:10.1038/15658. 10559986
[75]
Sandvig, K.; Garred, ?.; Prydz, K.; Kozlov, J.V.; Hansen, S.H.; van Deurs, B. Retrograde transport of endocytosed Shiga toxin to the endoplasmic reticulum. Nature?1992, 358, 510–512, doi:10.1038/358510a0. 1641040
[76]
Suzuki, A.; Doi, H.; Matsuzawa, F.; Aikawa, S.; Takiguchi, K.; Kawano, H.; Hayashida, M.; Ohno, S. Bcl-2 antiapoptotic protein mediates verotoxin II-induced cell death: possible association between Bcl-2 and tissue failure by E. coli O157:H7. Genes Dev.?2000, 14, 1734–1740. 10898788
[77]
Brigotti, M.; Alfieri, R.; Sestili, P.; Bonelli, M.; Petronini, P.G.; Guidarelli, A.; Barbieri, L.; Stirpe, F.; Sperti, S. Damage to nuclear DNA induced by Shiga toxin 1 and ricin in human endothelial cells. FASEB J.?2002, 16, 365–372, doi:10.1096/fj.01-0521com. 11874985
[78]
Schiavo, G.; van der Goot, F.G. The bacterial toxin toolkit. Nat. Rev. Mol. Cell Biol.?2001, 2, 530–537, doi:10.1038/35080089. 11433367
[79]
Roy, C.R. Exploitation of the endoplasmic reticulum by bacterial pathogens. Trends Microbiol.?2002, 10, 418–424, doi:10.1016/S0966-842X(02)02421-6. 12217507
[80]
Wernick, N.L.B.; Chinnapen, D.J.-F; Cho, J.A.; Lencer, W.I. Cholera toxin: an intracellular journey into the cytosol by way of the endoplasmic reticulum. Toxins?2010, 2, 310–325, doi:10.3390/toxins2030310.
[81]
Kurmanova, A.; Llorente, A.; Polesskaya, A.; Garred, ?.; Olsnes, S.; Kozlov, J.; Sandvig, K. Structural requirements for furin-induced cleavage and activation of Shiga toxin. Biochem. Biophys. Res. Commun.?2007, 357, 144–149, doi:10.1016/j.bbrc.2007.03.110. 17407762
[82]
Yu, M.; Haslam, D.B. Shiga toxin is transported from the endoplasmic reticulum following interaction with the luminal chaperone HEDJ/ERdj3. Infect. Immun.?2005, 73, 2524–2532, doi:10.1128/IAI.73.4.2524-2532.2005. 15784599
[83]
Falguières, T.; Johannes, L. Shiga toxin B-subunit binds to the chaperone BiP and the nucleolar protein B23. Biol. Cell?2006, 98, 125–134, doi:10.1042/BC20050001. 15853775
[84]
Tam, P.J.; Lingwood, C.A. Membrane cytosolic translocation of verotoxin A1 subunit in target cells. Microbiology?2007, 153, 2700–2710, doi:10.1099/mic.0.2007/006858-0. 17660434
[85]
Iordanov, M.S.; Pribnow, D.; Magun, J.L.; Dinh, T.-H.; Pearson, J.A.; Chen, S.L.; Magun, B.E. Ribotoxic stress response: Activation of the stress-activated protein kinase JNK1 by inhibitors of the peptidyl transferase reaction and by sequence-specific RNA damage to the alpha-sarcin/ricin loop in the 28S rRNA. Mol. Cell. Biol.?1997, 17, 3373–3381. 9154836
[86]
Cherla, R.P.; Lee, S.-Y.; Mees, P.L.; Tesh, V.L. Shiga toxin 1-induced cytokine production is mediated by MAP kinase pathways and translation initiation factor eIF4E in the macrophage-like THP-1 cell line. J. Leukoc. Biol.?2006, 79, 397–407. 16301326
[87]
Smith, W.E.; Kane, A.V.; Campbell, S.T.; Acheson, D.W.K.; Cochran, B.H.; Thorpe, C.M. Shiga toxin 1 triggers a ribotoxic stress response leading to p38 and JNK activation and induction of apoptosis in intestinal epithelial cells. Infect. Immun.?2003, 71, 1497–1504, doi:10.1128/IAI.71.3.1497-1504.2003. 12595468
[88]
Foster, G.H.; Tesh, V.L. Shiga toxin 1-induced activation of c-Jun NH(2)-terminal kinase and p38 in the human monocytic cell line THP-1: Possible involvement in the production of TNF-alpha. J. Leukoc. Biol.?2002, 71, 107–114. 11781386
[89]
Zhou, H.R.; Lau, A.S.; Pestka, J.J. Role of double-stranded RNA-activated protein kinase R (PKR) in deoxynivalenol-induced ribotoxic stress response. Toxicol. Sci.?2003, 74, 335–344, doi:10.1093/toxsci/kfg148. 12773753
[90]
Jandhyala, D.M.; Ahluwalia, A.; Obrig, T.; Thorpe, C.M. ZAK: A MAP3Kinase that transduces Shiga toxin- and ricin-induced proinflammatory cytokine expression. Cell. Microbiol.?2008, 10, 1468–1477, doi:10.1111/j.1462-5822.2008.01139.x. 18331592
[91]
Deng, X.; Xiao, L.; Lang, W.; Gao, F.; Ruvolo, P.; May, W.S. Novel role for JNK as a stress-activated Bcl2 kinase. J. Biol. Chem.?2001, 276, 23681–23688, doi:10.1074/jbc.M100279200. 11323415
[92]
De Chiara, G.; Marcocci, M.E.; Torcia, M.; Lucibello, M.; Rosini, P.; Bonini, P.; Higashimoto, Y.; Damonte, G.; Armirotti, A.; Amodei, S.; Palamara, A.T.; Russo, T.; Garaci, E.; Cozzolino, F. Bcl-2 Phosphorylation by p38 MAPK: Identification of target sites and biologic consequences. J. Biol. Chem.?2006, 281, 21353–21361, doi:10.1074/jbc.M511052200. 16714293
[93]
Lee, S.-Y.; Cherla, R.P.; Caliskan, I.; Tesh, V.L. Shiga toxin 1 induces apoptosis in the human myelogenous leukemia cell line THP-1 by a caspase-8-dependent, tumor necrosis factor receptor-independent mechanism. Infect. Immun.?2005, 73, 5115–5126, doi:10.1128/IAI.73.8.5115-5126.2005. 16041028
[94]
Tesh, V.L. Induction of apoptosis by Shiga toxins. Future Microbiol.?2010, 5, 431–453, doi:10.2217/fmb.10.4. 20210553
[95]
Cameron, P.; Smith, S.J.; Giembycz, M.A.; Rotondo, D.; Plevin, R. Verotoxin activates mitogen-activated protein kinase in human peripheral blood monocytes: role in apoptosis and proinflammatory cytokine release. Br. J. Pharmacol.?2003, 140, 1320–1330, doi:10.1038/sj.bjp.0705560. 14597601
[96]
Harrison, L.M.; Cherla, R.P.; van den Hoogen, C.; van Haaften, W.C.E.; Lee, S.-Y.; Tesh, V.L. Comparative evaluation of apoptosis induced by Shiga toxin 1 and/or lipopolysaccharides in human monocytic and macrophage-like cells. Microb. Pathog.?2005, 38, 63–76, doi:10.1016/j.micpath.2004.12.003. 15748808
[97]
Jimbo, A.; Fujita, E.; Kouroku, Y.; Ohnishi, J.; Inohara, N.; Kuida, K.; Sakamaki, K.; Yonehara, S.; Momoi, T. ER stress induces caspase-8 activation, stimulating cytochrome c release and caspase-9 activation. Exp. Cell Res.?2003, 283, 156–166, doi:10.1016/S0014-4827(02)00033-2. 12581736
[98]
Gething, M.J.; Sambrook, J. Protein folding in the cell. Nature?1992, 355, 33–45, doi:10.1038/355033a0. 1731198
[99]
Stirling, P.C.; Lundin, V.F.; Leroux, M.R. Getting a grip on non-native proteins. EMBO Rep.?2003, 4, 565–570, doi:10.1038/sj.embor.embor869. 12776175
[100]
Feldman, D.E.; Frydman, J. Protein folding in vivo: The importance of molecular chaperones. Curr. Opin. Struct. Biol.?2000, 10, 26–33, doi:10.1016/S0959-440X(99)00044-5. 10679467
[101]
Hatahet, F.; Ruddock, L.W.; Ahn, K.; Benham, A.; Craik, D.; Ellgaard, L.; Ferrari, D.; Ventura, S. Protein disulfide isomerase: A critical evaluation of its function in disulfide bond formation. Antioxid. Redox Signal.?2009, 11, 2807–2850, doi:10.1089/ars.2009.2466. 19476414
[102]
Ellgaard, L.; Helenius, A. Quality control in the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol.?2003, 4, 181–191. 12612637
[103]
Ron, D.; Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol.?2007, 8, 519–529, doi:10.1038/nrm2199. 17565364
[104]
Hendershot, L.M. The ER chaperone BiP is a master regulator of ER function. Mt. Sinai J. Med.?2004, 71, 289–297. 15543429
[105]
Boyce, M.; Yuan, J. Cellular response to endoplasmic reticulum stress: A matter of life or death. Cell Death Differ.?2006, 13, 363–373, doi:10.1038/sj.cdd.4401817. 16397583
[106]
Schroder, M.; Kaufman, R.J. The mammalian unfolded protein response. Annu. Rev. Biochem.?2005, 74, 739–789, doi:10.1146/annurev.biochem.73.011303.074134. 15952902
[107]
Szegezdi, E.; Logue, S.E.; Gorman, A.M.; Samali, A. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep.?2006, 7, 880–885, doi:10.1038/sj.embor.7400779. 16953201
[108]
Yoshida, H.; Matsui, T.; Yamamoto, A.; Okada, T.; Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell?2001, 107, 881–891, doi:10.1016/S0092-8674(01)00611-0. 11779464
[109]
Calfon, M.; Zeng, H.; Urano, F.; Till, J.H.; Hubbard, S.R.; Harding, H.P.; Clark, S.G.; Ron, D. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature?2002, 415, 92–96, doi:10.1038/415092a. 11780124
[110]
Ye, J.; Rawson, R.B.; Komuro, R.; Chen, X.; Dave, U.P.; Prywes, R.; Brown, M.S.; Goldstein, J.L. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell?2000, 6, 1355–1364, doi:10.1016/S1097-2765(00)00133-7. 11163209
[111]
Kadowaki, H.; Nishitoh, H.; Ichijo, H. Survival and apoptosis signals in ER stress: The role of protein kinases. J. Chem. Neuroanat.?2004, 28, 93–100, doi:10.1016/j.jchemneu.2004.05.004. 15363494
[112]
Joyce, M.A.; Walters, K.A.; Lamb, S.E.; Yeh, M.M.; Zhu, L.F.; Kneteman, N.; Doyle, J.S.; Katze, M.G.; Tyrrell, D.L. HCV induces oxidative and ER stress, and sensitizes infected cells to apoptosis in SCID/Alb-uPA mice. PLoS Pathog.?2009, 5, e1000291, doi:10.1371/journal.ppat.1000291. 19242562
[113]
Lee, S.-Y.; Lee, M.-S.; Cherla, R.P.; Tesh, V.L. Shiga toxin 1 induces apoptosis through the endoplasmic reticulum stress response in human monocytic cells. Cell. Microbiol.?2008, 10, 770–780, doi:10.1111/j.1462-5822.2007.01083.x. 18005243
[114]
Marciniak, S.J.; Yun, C.Y.; Oyadomari, S.; Novoa, I.; Zhang, Y.; Jungreis, R.; Nagata, K.; Harding, H.P.; Ron, D. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev.?2004, 18, 3066–3077, doi:10.1101/gad.1250704. 15601821
[115]
Yamaguchi, H.; Wang, H.G. CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. J. Biol. Chem.?2004, 279, 45495–45502, doi:10.1074/jbc.M406933200. 15322075
[116]
McCullough, K.D.; Martindale, J.L.; Klotz, L.O.; Aw, T.Y.; Holbrook, N.J. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol. Cell. Biol.?2001, 21, 1249–1259, doi:10.1128/MCB.21.4.1249-1259.2001. 11158311
Shi, Y.; Porter, K.; Parameswaran, N.; Bae, H.K.; Pestka, J.J. Role of GRP78/BiP degradation and ER stress in deoxynivalenol–induced interleukin-6 upregulation in the macrophage. Toxicol. Sci.?2009, 109, 247–255, doi:10.1093/toxsci/kfp060. 19336499
[120]
McConkey, D.J.; Orrenius, S. The role of calcium in the regulation of apoptosis. Biochem. Biophys. Res. Commun.?1997, 239, 357–366, doi:10.1006/bbrc.1997.7409. 9344835
[121]
Pinton, P.; Giorgi, C.; Siviero, R.; Zecchini, E.; Rizzuto, R. Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene?2008, 27, 6407–6418, doi:10.1038/onc.2008.308. 18955969
[122]
Filippin, L.; Magalhaes, P.J.; Di Benedetto, G.; Colella, M.; Pozzan, T. Stable interactions between mitochondria and endoplasmic reticulum allow rapid accumulation of calcium in a subpopulation of mitochondria. J. Biol. Chem.?2003, 278, 39224–39234, doi:10.1074/jbc.M302301200. 12874292
[123]
Boya, P.; Cohen, I.; Zamzami, N.; Vieira, H.L.; Kroemer, G. Endoplasmic reticulum stress-induced cell death requires mitochondrial membrane permeabilization. Cell Death Differ.?2002, 9, 465–467, doi:10.1038/sj.cdd.4401006. 11965500
[124]
Gil-Parrado, S.; Fernandez-Montalvan, A.; Assfalg-Machleidt, I.; Popp, O.; Bestvater, F.; Holloschi, A.; Knoch, T.A.; Auerswald, E.A.; Welsh, K.; Reed, J.C.; Fritz, H.; Fuentes-Prior, P.; Spiess, E.; Salvesen, G.S.; Machleidt, W. Ionomycin-activated calpain triggers apoptosis. A probable role for Bcl-2 family members. J. Biol. Chem.?2002, 277, 27217–27226. 12000759
[125]
Cherla, R.P.; Lee, S.-Y.; Mulder, R.A.; Lee, M.-S.; Tesh, V.L. Shiga toxin 1-induced proinflammatory cytokine production is regulated by the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling pathway. Infect. Immun.?2009, 77, 3919–3931, doi:10.1128/IAI.00738-09. 19596774
[126]
Lee, S.-Y.; Cherla, R.P.; Tesh, V.L. Simultaneous induction of apoptotic and survival signaling pathways in macrophage-like THP-1 cells by Shiga toxin 1. Infect. Immun.?2007, 75, 1291–1302, doi:10.1128/IAI.01700-06. 17194804
[127]
Lee, M.-S.; Cherla, R.P.; Leyva-Illades, D.; Tesh, V.L. Bcl-2 regulates the onset of Shiga toxin 1-induced apoptosis in THP-1 cells. Infect. Immun.?2009, 77, 5233–5344, doi:10.1128/IAI.00665-09. 19752028
[128]
Youle, R.J.; Strasser, A. The BCL-2 protein family: Opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol.?2008, 9, 47–59, doi:10.1038/nrm2308. 18097445
[129]
Giam, M.; Huang, D.C.; Bouillet, P. BH3-only proteins and their roles in programmed cell death. Oncogene?2008, 27 (Suppl. 1), S128–S136, doi:10.1038/onc.2009.50. 19641498
[130]
Lee, M.-S.; Cherla, R.P.; Lentz, E.K.; Leyva-Illades, D.; Tesh, V.L. Signaling through C/EBP homology protein and death receptor 5, and calpain activation differentially regulates THP-1 cell maturation-dependent apoptosis induced by Shiga toxin type 1. Infect. Immun.?2010.