Multidrug resistance is a phenomenon whereby tumors become resistant to structurally unrelated anticancer drugs. P-glycoprotein belongs to the large ATP-binding cassette (ABC) transporter superfamily of membrane transport proteins. P-glycoprotein mediates resistance to various classes of anticancer drugs including vinblastine, daunorubicin, and paclitaxel, by actively extruding the drugs from the cells. The quest for inhibitors of anticancer drug efflux transporters has uncovered natural compounds, including (-)-epigallocatechin gallate, curcumin, capsaicin, and guggulsterone, as promising candidates. In this review, studies on the effects of natural compounds on P-glycoprotein and anticancer drug efflux transporters are summarized.
References
[1]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell?2000, 100, 57–70.
[2]
Ambudkar, S.; Dey, S.; Hrycyna, C.A.; Ramachandra, M.; Pastan, I.; Gottesman, M.M. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu. Rev. Pharmacol. Toxicol.?1999, 39, 361–398.
Tsuda, H.; Ohshima, Y.; Nomoto, H.; Fujita, K.-I.; Matsuda, E.; Iigo, M.; Takasuka, N.; Moore, M.A. Cancer prevention by natural compounds. Drug. Metab. Pharmacokin.?2004, 19, 245–263, doi:10.2133/dmpk.19.245.
[6]
Aggarwal, B.B.; Shishodia, S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem. Pharmacol.?2006, 71, 1397–1421.
[7]
Aggarwal, B.B.; Van Kuiken, M.E.; Iyer, L.H.; Harikumar, K.B.; Sung, B. Molecular targets of nutraceuticals derived from dietary spices: Potential role in suppression of inflammation and tumorgenesis. Exp. Biol. Med.?2009, 234, 825–849.
[8]
Conseil, G.; Baubichon-Cortay, H.; Dayan, G.; Jault, J.-M.; Barron, D.; Di Pietro, A. Flavonoids: A class of modulators with bifunctional interactions at vicinal ATP- and steroid-binding sites on mouse P-glycoprotein. Proc. Natl. Acad. Sci. USA?1998, 95, 9831–9836.
[9]
Zhang, S.; Morris, M.E. Effects of the flavonoids biochanin A, morin, phloretin, and silymarin on P-glycoprotein-mediated transport. J. Pharmacol. Exp. Ther.?2003, 304, 1258–1267.
[10]
Kitagawa, S.; Nabekura, T.; Kamiyama, S. Inhibition of P-glycoprotein function by tea catechins in KB-C2 cells. J. Pharm. Pharmacol.?2004, 56, 1001–1005.
[11]
Nabekura, T.; Kamiyama, S.; Kitagawa, S. Effects of dietary chemopreventive phytochemicals on P-glycoprotein function. Biochem. Biophys. Res. Commun.?2005, 327, 866–870.
[12]
Endres, C.J.; Hsiao, P.; Chung, F.S.; Unadkat, J.D. The role of transporters in drug interactions. Eur. J. Pharm. Sci.?2006, 27, 501–507.
Dahan, A.; Altman, H. Food-drug interaction: Grapefruit juice augments drug bioavailability-mechanism, extent and relevance. Eur. J. Clin. Nutr.?2004, 58, 1–9.
[15]
Karin, M. Nuclear factor-κB in cancer development and progression. Nature?2006, 441, 431–436.
[16]
Hayden, M.S.; Ghosh, S. Shared principles in NF-κB signaling. Cell?2008, 132, 344–362.
[17]
Moon, R.T.; Kohn, A.D.; De Ferrari, G.V.; Kaykas, A. Wnt and β-catenin signalling: Diseases and therapies. Nat. Rev. Genet.?2004, 5, 691–701.
[18]
Reya, T.; Clevers, H. Wnt signalling in stem cells and cancer. Nature?2005, 434, 843–850.
[19]
Jaiswal, A.S.; Marlow, B.P.; Gupta, N.; Narayan, S. β-Catenin-mediated transactivation and cell-cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells. Oncogene?2002, 21, 8414–8427.
[20]
Park, C.H.; Hahm, E.R.; Park, S.; Kim, H.K.; Yang, C.H. The inhibitory mechanism of curcumin and its derivative against β-catenin/Tcf signaling. FEBS Lett.?2005, 579, 2965–2971.
[21]
Dashwood, W.-M.; Orner, G.A.; Dashwood, R.H. Inhibition of β-catenin/Tcf activity by white tea, green tea, and epigallocatechin-3-gallate (EGCG): Minor contribution of H2O2 at physiologically relevant EGCG concentrations. Biochem. Biophys. Res. Commun.?2002, 296, 584–588.
[22]
Kim, J.; Zhang, X.; Rieger-Christ, K.M.; Summerhayes, I.C.; Wazer, D.E.; Paulson, K.E.; Yee, A.S. Suppression of Wnt signaling by the green tea compound (-)-epigallocatechin 3-gallate (EGCG) in invasive breast cancer cells. Requirement of the transcriptional repressor HBP1. J. Biol. Chem.?2006, 281, 10865–10875. 16495219
[23]
Wang, Z.Y.; Huang, M.-T.; Lou, Y.-R.; Xie, J.-G.; Reuhl, K.R.; Newmark, H.L.; Ho, C.-T.; Yang, C.S.; Conney, A.H. Inhibitory effects of black tea, green tea, decaffeinated black tea, and decaffeinated green tea on ultraviolet B light-induced skin carcinogenesis in 7,12-dimethylbenz[a]anthracene-initiated SKH-1 mice. Cancer Res.?1994, 54, 3428–3435.
[24]
Nomura, M.; Ma, W.; Chen, N.; Bode, A.M.; Dong, Z. Inhibition of 12-O-tetradecanoylphorbol-13-acetate-induced NF-κB activation by tea polyphenols, (-)-epigallocatechin gallate and theaflavins. Carcinogenesis?2000, 21, 1885–1890.
[25]
Afaq, F.; Adhami, V.M.; Ahmad, N.; Mukhtar, H. Inhibition of ultraviolet B-mediated activation of nuclear factor κB in normal human epidermal keratinocytes by green tea constituent (-)-epigallocatechin-3-gallate. Oncogene?2003, 22, 1035–1044.
[26]
Orner, G.A.; Dashwood, W-M.; Blum, C.A.; Díaz, G.D.; Li, Q.; Al-Fageeh, M.; Tebbutt, N.; Heath, J.K.; Ernst, M.; Dashwood, R.H. Response of Apcmin and A33?Nβ-cat mutant mice to treatment with tea, sulindac, and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Mutat. Res.?2002, 506–507, 121–127. 12351151
[27]
Akiyama, S.; Fojo, A.; Hanover, J.A.; Pastan, I.; Gottesman, M.M. Isolation and genetic characterization of human KB cell lines resistant to multiple drugs. Somatic Cell Mol. Genet.?1985, 11, 117–126.
[28]
Roninson, I.B.; Chin, J.E.; Choi, K.G.; Gros, P.; Housman, D.E,; Fojo, A.; Shen, D.W.; Gottesman, M.M.; Pastan, I. Isolation of human mdr DNA sequences amplified in multidrug-resistant KB carcinoma cells. Proc. Natl. Acad. Sci. USA?1986, 83, 4538–4542.
[29]
Goel, A.; Kunnumakkara, A.B.; Aggarwal, B.B. Curcumin as "Curecumin": From kitchen to clinic. Biochem. Pharmacol.?2008, 75, 787–809.
[30]
Singh, S.; Aggarwal, B.B. Activation of transcription factor NF-κB is suppressed by curcumin (diferuloylmethane). J. Biol. Chem.?1995, 270, 24995–25000.
[31]
Chun, K.-S.; Keum, Y.-S.; Han, S.S.; Song, Y.-S.; Kim, S.-H.; Surh, Y.-J. Curcumin inhibits phorbol ester-induced expression of cyclooxygenase-2 in mouse skin through suppression of extracellular signal-regulated kinase activity and NF-κB activation. Carcinogenesis?2003, 24, 1515–1524.
[32]
Guertin, D.A.; Sabatini, D.M. Defining the role of mTOR in cancer. Cancer Cell?2007, 12, 9–22.
[33]
Beevers, C.S.; Li, F.; Liu, L.; Huang, S. Curcumin inhibits the mammalian target of rapamycin-mediated signaling pathways in cancer cells. Int. J. Cancer?2006, 119, 757–764.
[34]
Yu, S.; Shen, G.; Khor, T.O.; Kim, J-H.; Kong, A-N. Curcumin inhibits Akt/mammalian target of rapamycin signaling through protein phosphatase-dependent mechanism. Mol. Cancer Res.?2008, 7, 2609–2620.
[35]
Singh, S.; Natarajan, K.; Aggarwal, B.B. Capsaicin (8-methyl-N-vanillyl-6-nonenamide) is a potent inhibitor of nuclear transcription factor-κB activation by diverse agents. J. Immunol.?1996, 157, 4412–4420.
[36]
Han, S.S.; Keum, Y.-S.; Seo, H.-J.; Chun, K.-S.; Lee, S.S.; Surh, Y.-J. Capsaicin suppresses phorbol ester-induced activation of NF-κB/Rel and AP-1 transcription factors in mouse epidermis. Cancer Lett.?2001, 164, 119–126.
[37]
Kim, S.O.; Chun, K.-S.; Kundu, J.K.; Surh, Y.-J. Inhibitory effects of [6]-gingerol on PMA-induced COX-2 expression and activation of NF-κB and p38 MAPK in mouse skin. Biofactors?2004, 21, 27–31.
[38]
Lee, S.-H.; Cekanova, M.; Baek, S.J. Multiple mechanisms are involved in 6-gingerol-induced cell growth arrest and apoptosis in human colorectal cancer cells. Mol. Carcinog.?2008, 47, 197–208.
[39]
Chang, S.S.; Ostric-Matijasevic, B.; Hsieh, O.A.L.; Huang, C.-L. Natural antioxidants from rosemary and sage. J. Food Sci.?1977, 42, 1102–1106.
[40]
Wu, J.W.; Lee, M.-H.; Ho, C.-T.; Chang, S.S. Elucidation of the chemical structures of natural antioxidants isolated from rosemary. J. Am. Oil Chem. Soc.?1982, 59, 339–345.
[41]
Aruoma, O.I.; Halliwell, B.; Aeschbach, R.; L?ligers, J. Antioxidant and pro-oxidant properties of active rosemary constituents: Carnosol and carnosic acid. Xenobiotica?1992, 22, 257–268.
[42]
Cuvelier, M.-E.; Richard, H.; Berset, C. Antioxidant activity and phenolic composition of pilot-plant and commercial extracts of sage and rosemary. J. Am. Oil Chem. Soc.?1996, 73, 645–652.
[43]
Masuda, T.; Inaba, Y.; Takeda, Y. Antioxidant mechanism of carnosic acid: Structural identification of two oxidation products. J. Agric. Food Chem.?2001, 49, 5560–5565.
[44]
Wellwood, C.R.; Cole, R.A. Relevance of carnosic acid concentrations to the selection of rosemary, Rosmarinus officinalis (L.), accessions for optimization of antioxidant yield. J. Agric. Food Chem.?2004, 52, 6101–6107, doi:10.1021/jf035335p. 15453673
[45]
Yu, L.; Scanlin, L.; Wilson, J.; Schmidt, G. Rosemary extracts as inhibitors of lipid oxidation and color change in cooked turkey products during refrigerated storage. J. Food Sci.?2002, 67, 582–585.
[46]
Riznar, K.; Celan, S.; Knez, Z.; Skerget, M.; Bauman, D.; Glaser, R. Antioxidant and antimicrobial activity of rosemary extract in chicken frankfurters. J. Food Sci.?2006, 71, C425–C429.
[47]
Huang, M.-T.; Ho, C.-T.; Wang, Z.Y.; Ferraro, T.; Lou, Y.-R.; Stauber, K.; Ma, W.; Georgiadis, C.; Laskin, J.D.; Conney, A.H. Inhibition of skin tumorigenesis by rosemary and its constituents carnosol and ursolic acid. Cancer Res.?1994, 54, 701–708.
[48]
Lo, A.-H.; Liang, Y.-C.; Lin-Shiau, S.-Y.; Ho, C.-T.; Lin, J.-K. Carnosol, an antioxidant in rosemary, suppresses inducible nitric oxide synthase through down-regulating nuclear factor-κB in mouse macrophages. Carcinogenesis?2002, 23, 983–991.
[49]
Shishodia, S.; Majumdar, S.; Banerjee, S.; Aggarwal, B.B. Ursolic acid inhibits nuclear factor-κB activation induced by carcinogenic agents through suppression of IκBα kinase and p65 phosphorylation: Correlation with down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1. Cancer Res.?2003, 63, 4375–4383.
[50]
Huang, S.-C.; Ho, C.-T.; Lin-Shiau, S.-Y.; Lin, J.-K. Carnosol inhibits the invasion of B16/F10 mouse melanoma cells by suppressing metalloproteinase-9 through down-regulating nuclear factor-kappaB and c-Jun. Biochem. Pharmacol.?2005, 69, 221–232.
[51]
Moran, A.E.; Carothers, A.M.; Weyant, M.J.; Redston, M.; Bertagnolli, M.M. Carnosol inhibits β-catenin tyrosine phosphorylation and prevents adenoma formation in the C57BL/6J/Min/+ (Min/+) mouse. Cancer Res.?2005, 65, 1097–1104.
[52]
Nabekura, T.; Yamaki, T.; Hiroi, T.; Ueno, K.; Kitagawa, S. Inhibition of anticancer drug efflux transporter P-glycoprotein by rosemary phytochemicals. Pharmacol. Res.?2010, 61, 259–263.
[53]
Kitagawa, S.; Nabekura, T.; Takahashi, T.; Nakamura, Y.; Sakamoto, H.; Tano, H.; Hirai, M.; Tsukahara, G. Structure-activity relationships of the inhibitory effects of flavonoids on P-glycoprotein-mediated transport in KB-C2 cells. Biol. Pharm. Bull.?2005, 28, 2274–2278.
[54]
Ju-ichi, M. Chemical study of Citrus plants in the search for cancer chemopreventive agents. Yakugaku Zasshi?2005, 125, 231–254.
Tanaka, T.; Kawabata, K.; Kakumoto, M.; Matsunaga, K.; Mori, H.; Murakami, A.; Kuki, W.; Takahashi, Y.; Yonei, H.; Satoh, K.; Hara, A.; Maeda, M.; Ota, T.; Odashima, S.; Koshimizu, K.; Ohigashi, H. Chemoprevention of 4-nitroquinoline 1-oxide-induced oral carcinogenesis by citrus auraptene in rats. Carcinogenesis?1998, 19, 425–431.
[57]
Tang, M.-X.; Ogawa, K.; Asamoto, M.; Hokaiwado, N.; Seeni, A.; Suzuki, S.; Takahashi, S.; Tanaka, T.; Ichikawa, K.; Shirai, T. Protective effects of citrus nobiletin and auraptene in transgenic rats developing adenocarcinoma of the prostate (TRAP) and human prostate carcinoma cells. Cancer Sci.?2007, 98, 471–477.
[58]
Murakami, A.; Nakamura, Y.; Tanaka, T.; Kawabata, K.; Takahashi, D.; Koshimizu, K.; Ohigashi, H. Suppression by citrus auraptene of phorbol ester- and endotoxin- induced inflammatory responses: role of attenuation of leukocyte activation. Carcinogenesis?2000, 21, 1843–1850.
[59]
Murakami, A.; Nakamura, Y.; Torikai, K.; Tanaka, T.; Koshiba, T.; Koshimizu, K.; Kuwahara, S.; Takahashi, Y.; Ogawa, K.; Yano, M.; Tokuda, H.; Nishino, H.; Mimaki, Y.; Sashida, Y.; Kitanaka, S.; Ohigashi, H. Inhibitory effect of citrus nobiletin on phorbol ester-induced skin inflammation, oxidative stress, and tumor promotion in mice. Cancer Res.?2000, 60, 5059–5066.
[60]
Murakami, A.; Kuki, W.; Takahashi, Y.; Yonei, H.; Nakamura, Y.; Ohto, Y.; Ohigashi, H.; Koshimizu, K. Auraptene, a citrus coumarin, inhibits 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion in ICR mouse skin, possibly through suppression of superoxide generation in leukocytes. Jpn. J. Cancer Res.?1997, 88, 443–452.
[61]
Kawaii, S.; Tomono, Y.; Katase, E.; Ogawa, K.; Yano, M. HL-60 differentiating activity and flavonid content of the readily extractable fraction prepared from citrus juices. J. Agric. Food Chem.?1999, 47, 128–135.
[62]
Mouly, P.; Gaydou, E.M.; Auffray, A. Simultaneous separation of flavanone glycosides and polymethoxylated flavones in citrus juices using liquid chromatography. J. Chromatogr. A?1998, 800, 171–179.
[63]
Nabekura, T.; Yamaki, T.; Kitagawa, S. Effects of chemopreventive citrus phytochemicals on human P-glycoprotein and multidrug resistance protein 1. Eur. J. Pharmacol.?2008, 600, 45–49.
[64]
Lichtenstein, A.H.; Deckelbaum, R.J. Stanol/sterol ester-containing foods and blood cholesterol levels. A statement for healthcare professionals from the Nutrition Committee of the Council on Nutrition, Physical Activity, and Metabolism of the American Heart Association. Circulation?2001, 103, 1177–1179. 11222485
[65]
Katan, M.B.; Grundy, S.M.; Jones, P.; Law, M.; Miettinen, T.; Paoletti, R. Efficacy and safety of plant stanols and sterols in the management of blood cholesterol levels. Mayo Clin. Proc.?2003, 78, 965–978.
[66]
Awad, A.B.; Fink, C.S. Phytosterols as anticancer dietary components: Evidence and mechanism of action. J. Nutr.?2000, 130, 2127–2130.
[67]
Satyavati, G.V. Gum guggul (Commiphora mukul)—the success story of an ancient insight to a modern discovery. Indian J. Med. Res.?1988, 87, 327–335.
Szapary, P.O.; Wolfe, M.L.; Bloedon, L.T.; Cucchiara, A.J.; DerMarderosian, A.H.; Cirigliano, M.D.; Rader, D.J. Guggulipid for the treatment of hypercholesterolemia: A randomized controlled trial. JAMA?2003, 290, 765–772.
[70]
Urizar, N.L.; Liverman, A.B.; Dodds, D.T.; Silva, F.V.; Ordentlich, P.; Yan, Y.; Gonzalez, F.J.; Heyman, R.A.; Mangelsdorf, D.J.; Moore, D.D. A natural product that lowers cholesterol as an antagonist ligand for FXR. Science?2002, 296, 1703–1706.
[71]
Cui, J.; Huang, L.; Zhao, A.; Lew, J.L.; Yu, J.; Sahoo, S.; Meinke, P.T.; Royo, I.; Pelaez, F.; Wright, S.D. Guggulsterone is a farnesoid X receptor antagonist in coactivator association assays but acts to enhance transcription of bile salt export pump. J. Biol. Chem.?2003, 278, 10214–10220.
[72]
Shishodia, S.; Aggarwal, B.B. Guggulsterone inhibits NF-κB and IκBα kinase activation, suppresses expression of anti-apoptotic gene products, and enhances apoptosis. J. Biol. Chem.?2004, 279, 47148–47158.
[73]
Nabekura, T.; Yamaki, T.; Ueno, K.; Kitagawa, S. Effects of plant sterols on human multidrug transporters ABCB1 and ABCC1. Biochem. Biophys. Res. Commun.?2008, 369, 363–368.
[74]
Nabekura, T.; Yamaki, T.; Ueno, K.; Kitagawa, S. Inhibition of P-glycoprotein and multidrug resistance protein 1 by dietary phytochemicals. Cancer Chemother. Pharmacol.?2008, 62, 867–873.
[75]
Kitagawa, S.; Takahashi, T.; Nabekura, T.; Tachikawa, E.; Hasegawa, H. Inhibitory effects of ginsenosides and their hydrolyzed metabolites on daunorubicin transport in KB-C2 cells. Biol. Pharm. Bull.?2007, 30, 1979–1981.
[76]
Allen, J.D.; Brinkhuis, R.F.; van Deemter, L.; Wijnholds, J.; Shinkel, A.H. Extensive contribution of the multidrug transporters P-glycoprotein and MRP1 to basal drug resistance. Cancer Res.?2000, 60, 5761–5766.
[77]
Leslie, E.M.; Mao, Q.; Oleschuk, C.J.; Deeley, R.G.; Cole, S.P.C. Modulation of multidrug resistance protein 1 (MRP1/ABCC1) transport and ATPase activities by interaction with dietary flavonoids. Mol. Pharmacol.?2001, 59, 1171–1180.
[78]
Wortelboer, H.M.; Usta, M.; van der Velde, A.E.; Boersma, M.G.; Spenkelink, B.; van Zanden, J.J.; Rietjens, I.M.; van Bladeren, P.J.; Cnubben, N.H.P. Interplay between MRP inhibition and metabolism of MRP inhibitors: The case of curcumin. Chem. Res. Toxicol.?2003, 16, 1642–1651, doi:10.1021/tx034101x. 14680379
[79]
Wortelboer, H.M.; Usta, M.; van Zanden, J.J.; van Bladeren, P.J.; Rietjens, I.M.C.M.; Cnubben, N.H.P. Inhibition of multidrug resistance proteins MRP1 and MRP2 by a series of α,β-unsaturated carbonyl compounds. Biochem. Pharmacol.?2005, 69, 1879–1890.
[80]
Hong, J.; Lambert, J.D.; Lee, S.H.; Sinko, P.J.; Yang, C.S. Involvement of multidrug resistance-associated proteins in regulating cellular levels of (-)-epigallocatechin-3-gallate and its methyl metabolites. Biochem.Biophys. Res. Commun.?2003, 310, 222–227.
[81]
Nguyen, H.; Zhang, S.; Morris, M.E. Effect of flavonoids on MRP1-mediated transport in Panc-1 cells. J. Pharm. Sci.?2003, 92, 250–257.
[82]
Callaghan, R.; Crowley, E.; Potter, S.; Kerr, I.D. P-glycoprotein: So many ways to turn it on. J. Clin. Pharmacol.?2008, 48, 365–378, doi:10.1177/0091270007311568. 18156365
[83]
Yamada, T.; Takaoka, A.S; Naishiro, Y.; Hayashi, R.; Maruyama, K.; Maesawa, C.; Ochiai, A.; Hirohashi, S. Transactivation of the multidrug resistance 1 gene by T-cell factor 4/β-catenin complex in early colorectal carcinogenesis. Cancer Res.?2000, 60, 4761–4766. 10987283
[84]
Yamada, T.; Mori, Y.; Hayashi, R.; Takada, M.; Ino, Y.; Naishiro, Y.; Kondo, T.; Hirohashi, S. Suppression of intestinal polyposis in Mdr1-deficient ApcMin/+ mice. Cancer Res.?2003, 63, 895–901.
[85]
Lim, J.C.; Kania, K.D.; Wijesuriya, H.; Chawla, S.; Sethi, J.K.; Pulaski, L.; Romero, I.A.; Couraud, P.O.; Weksler, B.B.; Hladky, S.B.; Barrand, M.A. Activation of β-catenin signalling by GSK-3 inhibition increases p-glycoprotein expression in brain endothelial cells. J. Neurochem.?2008, 106, 1855–1865.
[86]
Flahaut, M.; Meier, R.; Coulon, A.; Nardou, K.A.; Niggli, F.K.; Martinet, D.; Beckmann, J.S.; Joseph, J.M.; Mühlethaler-Mottet, A.; Gross, N. The Wnt receptor FZD1 mediates chemoresistance in neuroblastoma through activation of the Wnt/β-catenin pathway. Oncogene?2009, 28, 2245–2256.