全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Toxins  2010 

Escherichia coli Shiga Toxin Mechanisms of Action in Renal Disease

DOI: 10.3390/toxins2122769

Keywords: Shiga toxin, kidney, HUS, Gb3, animal model, renal failure, E. coli

Full-Text   Cite this paper   Add to My Lib

Abstract:

Shiga toxin-producing Escherichia coli is a contaminant of food and water that in humans causes a diarrheal prodrome followed by more severe disease of the kidneys and an array of symptoms of the central nervous system. The systemic disease is a complex referred to as diarrhea-associated hemolytic uremic syndrome (D+HUS). D+HUS is characterized by thrombocytopenia, microangiopathic hemolytic anemia, and acute renal failure. This review focuses on the renal aspects of D+HUS. Current knowledge of this renal disease is derived from a combination of human samples, animal models of D+HUS, and interaction of Shiga toxin with isolated renal cell types. Shiga toxin is a multi-subunit protein complex that binds to a glycosphingolipid receptor, Gb3, on select eukaryotic cell types. Location of Gb3 in the kidney is predictive of the sites of action of Shiga toxin. However, the toxin is cytotoxic to some, but not all cell types that express Gb3. It also can cause apoptosis or generate an inflammatory response in some cells. Together, this myriad of results is responsible for D+HUS disease.

References

[1]  Karmali, M.A.; Petric, M.; Lim, C.; Fleming, P.C.; Arbus, G.S.; Lior, H. The association between idiopathic hemolytic uremic syndrome and infection by verotoxin-producing Escherichia coli. J. Infect. Dis.?1985, 151, 775–782.
[2]  Habib, R. Pathology of the hemolytic uremic syndrome. In Thrombotic Thrombocytopenic Purpura; Kaplan, B.S., Trompeter, R.S., Moake, J.L., Eds.; Decker: New York, NY, USA, 1992; pp. 315–353.
[3]  Copelovitch, L.; Kaplan, B.S. The thrombotic microangiopathies. Pediatr. Nephrol.?2008, 23, 1761–1767.
[4]  Zipfel, P.F.; Heinen, S.; Skerka, C. Thrombotic microangiopathies: New insights and new challenges. Curr. Opin. Nephrol. Hypertens.?2010, 19, 372–378.
[5]  Tsai, H.M. The molecular biology of thrombotic microangiopathy. Kidney Int.?2006, 70, 16–23.
[6]  Franchini, M.; Zaffanello, M.; Veneri, D. Advances in the pathogenesis, diagnosis and treatment of thrombotic thrombocytopenic purpura and hemolytic uremic syndrome. Thromb. Res.?2006, 118, 177–184.
[7]  Sadler, J.E.; Moake, J.L.; Miyata, T.; George, J.N. Recent advances in thrombotic thrombocytopenic purpura. Hematol. Am. Soc. Hematol. Edu. Program?2004, 1, 407–423.
[8]  Zimmerhackl, L.B.; Besbas, N.; Jungraithmayr, T.; van de Kar, N.; Karch, H.; Karpman, D.; Landau, D.; Loirat, C.; Proesmans, W.; Prufer, F.; Rizzoni, G.; Taylor, M.C. Epidemiology, clinical presentation, and pathophysiology of atypical and recurrent hemolytic uremic syndrome. Semin. Thromb. Hemost.?2006, 32, 113–120.
[9]  Caprioli, J.; Peng, L.; Remuzzi, G. The hemolytic uremic syndromes. Curr. Opin. Crit. Care.?2005, 11, 487–492.
[10]  Benz, K.; Amann, K. Thrombotic microangiopathy: New insights. Curr. Opin. Nephrol. Hypertens.?2010, 19, 242–247.
[11]  Tarr, P.I. Shiga toxin-associated hemolytic uremic syndrome and thrombotic thrombocytopenic purpura: Distinct mechanisms of pathogenesis. Kidney Int. Suppl.?2009, February, S29–S32.
[12]  Paixao-Cavalcante, D.; Botto, M.; Cook, H.T.; Pickering, M.C. Shiga toxin-2 results in renal tubular injury but not thrombotic microangiopathy in heterozygous factor H-deficient mice. Clin. Exp. Immunol.?2009, 155, 339–347.
[13]  Silasi-Mansat, R.; Zhu, H.; Popescu, N.I.; Peer, G.; Sfyroera, G.; Magotti, P.; Ivanciu, L.; Lupu, C.; Mollnes, T.E.; Taylor, F.B.; Kinasewitz, G.; Lambris, J.D.; Lupu, F. Complement inhibition decreases the procoagulant response and confers organ protection in a baboon model of Escherichia coli sepsis. Blood?2010, 116, 1002–1010.
[14]  Noris, M.; Caprioli, J.; Bresin, E.; Mossali, C.; Pianetti, G.; Gamba, S.; Daina, E.; Fenili, C.; Castelletti, F.; Sorosina, A.; Piras, R.; Donadelli, R.; Maranta, R.; van der Meer, I.; Conway, E.M.; Zipfel, P.F.; Goodship, T.H.; Remuzzi, G. Relative role of genetic complement abnormalities in Sporadic and Familial aHUS and their impact on clinical phenotype. Clin. J. Am. Soc. Nephrol.?2010, 5, 1844–1859.
[15]  Manea, M.; Kristoffersson, A.; Tsai, H.M.; Zhou, W.; Winqvist, I.; Oldaeus, G.; Billstrom, R.; Bjork, P.; Holmberg, L.; Karpman, D. ADAMTS13 phenotype in plasma from normal individuals and patients with thrombotic thrombocytopenic purpura. Eur. J. Pediatr.?2007, 166, 249–257.
[16]  Vesely, S.K.; George, J.N.; Lammle, B.; Studt, J.D.; Alberio, L.; El-Harake, M.A.; Raskob, G.E. ADAMTS13 activity in thrombotic thrombocytopenic purpura-hemolytic uremic syndrome: Relation to presenting features and clinical outcomes in a prospective cohort of 142 patients. Blood?2003, 102, 60–68.
[17]  Moake, J.L. Defective processing of unusually large von Willebrand factor multimers and thrombotic thrombocytopenic purpura. J. Thromb. Haemost.?2004, 2, 1515–1521.
[18]  Obata, F.; Obrig, T. Distribution of Gb(3) Immunoreactivity in the Mouse Central Nervous System. Toxins?2010, 2, 1997–2006.
[19]  Obata, F. Influence of Escherichia coli shiga toxin on the mammalian central nervous system. Adv. Appl. Microbiol.?2010, 71, 1–19.
[20]  Obata, F.; Tohyama, K.; Bonev, A.D.; Kolling, G.L.; Keepers, T.R.; Gross, L.K.; Nelson, M.T.; Sato, S.; Obrig, T.G. Shiga toxin 2 affects the central nervous system through receptor globotriaosylceramide localized to neurons. J. Infect. Dis.?2008, 198, 1398–1406.
[21]  Fujii, J.; Wood, K.; Matsuda, F.; Carneiro-Filho, B.A.; Schlegel, K.H.; Yutsudo, T.; Binnington-Boyd, B.; Lingwood, C.A.; Obata, F.; Kim, K.S.; Yoshida, S.; Obrig, T. Shiga toxin 2 causes apoptosis in human brain microvascular endothelial cells via C/EBP homologous protein. Infect. Immun.?2008, 76, 3679–3689.
[22]  Tarr, P.I.; Gordon, C.A.; Chandler, W.L. Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet?2005, 365, 1073–1086.
[23]  Wong, C.S.; Jelacic, S.; Habeeb, R.L.; Watkins, S.L.; Tarr, P.I. The risk of the hemolytic-uremic syndrome after antibiotic treatment of Escherichia coli O157:H7 infections. New Engl. J. Med.?2000, 342, 1930–1936.
[24]  Zhang, X.; McDaniel, A.D.; Wolf, L.E.; Keusch, G.T.; Waldor, M.K.; Acheson, D.W. Quinolone antibiotics induce Shiga toxin-encoding bacteriophages, toxin production, and death in mice. J. Infect. Dis.?2000, 181, 664–670.
[25]  Strockbine, N.A.; Jackson, M.P.; Sung, L.M.; Holmes, R.K.; O'Brien, A.D. Cloning and sequencing of the genes for Shiga toxin from Shigella dysenteriae type 1. J. Bacteriol.?1988, 170, 1116–1122.
[26]  Mora, A.; Leon, S.L.; Blanco, M.; Blanco, J.E.; Lopez, C.; Dahbi, G.; Echeita, A.; Gonzalez, E.A.; Blanco, J. Phage types, virulence genes and PFGE profiles of Shiga toxin-producing Escherichia coli O157:H7 isolated from raw beef, soft cheese and vegetables in Lima (Peru). Int. J. Food Microbiol.?2007, 114, 204–210. 17187886
[27]  Imamovic, L.; Jofre, J.; Schmidt, H.; Serra-Moreno, R.; Muniesa, M. Phage-mediated Shiga toxin 2 gene transfer in food and water. Appl. Environ. Microbiol.?2009, 75, 1764–1768.
[28]  Asakura, H.; Makino, S.; Shirahata, T.; Tsukamoto, T.; Kurazono, H.; Ikeda, T.; Takeshi, K. Detection and genetical characterization of Shiga toxin-producing Escherichia coli from wild deer. Microbiol. Immunol.?1998, 42, 815–822.
[29]  Miko, A.; Pries, K.; Haby, S.; Steege, K.; Albrecht, N.; Krause, G.; Beutin, L. Assessment of Shiga toxin-producing Escherichia coli isolates from wildlife meat as potential pathogens for humans. Appl. Environ. Microbiol.?2009, 75, 6462–6470.
[30]  Smith, D.G.; Naylor, S.W.; Gally, D.L. Consequences of EHEC colonisation in humans and cattle. Int. J. Med. Microbiol.?2002, 292, 169–183.
[31]  Karmali, M.A.; Mascarenhas, M.; Shen, S.; Ziebell, K.; Johnson, S.; Reid-Smith, R.; Isaac-Renton, J.; Clark, C.; Rahn, K.; Kaper, J.B. Association of genomic O island 122 of Escherichia coli EDL 933 with verocytotoxin-producing Escherichia coli seropathotypes that are linked to epidemic and/or serious disease. J. Clin. Microbiol.?2003, 41, 4930–4940.
[32]  Kaper, J.B.; Karmali, M.A. The continuing evolution of a bacterial pathogen. Proc. Natl. Acad. Sci. USA.?2008, 105, 4535–4536.
[33]  O'Brien, A.D.; Tesh, V.L.; Donohue-Rolfe, A.; Jackson, M.P.; Olsnes, S.; Sandvig, K.; Lindberg, A.A.; Keusch, G.T. Shiga toxin: Biochemistry, genetics, mode of action, and role in pathogenesis. Curr. Top. Microbiol. Immunol.?1992, 180, 65–94. 1324134
[34]  Obrig, T.G. Shiga toxin mode of action in E. coli O157:H7 disease. Front Biosci.?1997, 2, d635–d642. 9392626
[35]  Fontaine, A.; Arondel, J.; Sansonetti, P.J. Role of Shiga toxin in the pathogenesis of bacillary dysentery, studied by using a Tox-mutant of Shigella dysenteriae 1. Infect. Immun.?1988, 56, 3099–3109.
[36]  Fraser, M.E.; Fujinaga, M.; Cherney, M.M.; Melton-Celsa, A.R.; Twiddy, E.M.; O'Brien, A.D.; James, M.N. Structure of shiga toxin type 2 (Stx2) from Escherichia coli O157:H7. J. Biol. Chem.?2004, 279, 27511–27517.
[37]  Chark, D.; Nutikka, A.; Trusevych, N.; Kuzmina, J.; Lingwood, C. Differential carbohydrate epitope recognition of globotriaosyl ceramide by verotoxins and a monoclonal antibody. Eur. J. Biochem.?2004, 271, 405–417.
[38]  Tam, P.; Mahfoud, R.; Nutikka, A.; Khine, A.A.; Binnington, B.; Paroutis, P.; Lingwood, C. Differential intracellular transport and binding of verotoxin 1 and verotoxin 2 to globotriaosylceramide-containing lipid assemblies. J. Cell. Physiol.?2008, 216, 750–763.
[39]  Rutjes, N.W.; Binnington, B.A.; Smith, C.R.; Maloney, M.D.; Lingwood, C.A. Differential tissue targeting and pathogenesis of verotoxins 1 and 2 in the mouse animal model. Kidney Int.?2002, 62, 832–845.
[40]  Tesh, V.L.; Burris, J.A.; Owens, J.W.; Gordon, V.M.; Wadolkowski, E.A.; O'Brien, A.D.; Samuel, J.E. Comparison of the relative toxicities of Shiga-like toxins type I and type II for mice. Infect. Immun.?1993, 61, 3392–3402.
[41]  Sandvig, K.; Bergan, J.; Dyve, A.B.; Skotland, T.; Torgersen, M.L. Endocytosis and retrograde transport of Shiga toxin. Toxicon?2010, 56, 1181–1185.
[42]  Kurmanova, A.; Llorente, A.; Polesskaya, A.; Garred, O.; Olsnes, S.; Kozlov, J.; Sandvig, K. Structural requirements for furin-induced cleavage and activation of Shiga toxin. Biochem. Biophys. Res. Commun.?2007, 357, 144–149.
[43]  Lingwood, C.A.; Khine, A.A.; Arab, S. Globotriaosyl ceramide (Gb3) expression in human tumour cells: Intracellular trafficking defines a new retrograde transport pathway from the cell surface to the nucleus, which correlates with sensitivity to verotoxin. Acta Biochim. Pol.?1998, 45, 351–359.
[44]  Khine, A.A.; Firtel, M.; Lingwood, C.A. CD77-dependent retrograde transport of CD19 to the nuclear membrane: Functional relationship between CD77 and CD19 during germinal center B-cell apoptosis. J. Cell. Physiol.?1998, 176, 281–292.
[45]  Endo, Y.; Tsurugi, K.; Yutsudo, T.; Takeda, Y.; Ogasawara, T.; Igarashi, K. Site of action of a Vero toxin (VT2) from Escherichia coli O157:H7 and of Shiga toxin on eukaryotic ribosomes. RNA N-glycosidase activity of the toxins. Eur. J. Biochem.?1988, 171, 45–50.
[46]  Obrig, T.G.; Moran, T.P.; Brown, J.E. The mode of action of Shiga toxin on peptide elongation of eukaryotic protein synthesis. Biochem. J.?1987, 244, 287–294.
[47]  Obrig, T.G.; Del Vecchio, P.J.; Brown, J.E.; Moran, T.P.; Rowland, B.M.; Judge, T.K.; Rothman, S.W. Direct cytotoxic action of Shiga toxin on human vascular endothelial cells. Infect. Immun.?1988, 56, 2373–2378.
[48]  Jandhyala, D.M.; Ahluwalia, A.; Obrig, T.; Thorpe, C.M. ZAK: A MAP3Kinase that transduces Shiga toxin- and ricin-induced proinflammatory cytokine expression. Cell. Microbiol.?2008, 10, 1468–1477.
[49]  Iordanov, M.S.; Pribnow, D.; Magun, J.L.; Dinh, T.H.; Pearson, J.A.; Chen, S.L.; Magun, B.E. Ribotoxic stress response: Activation of the stress-activated protein kinase JNK1 by inhibitors of the peptidyl transferase reaction and by sequence-specific RNA damage to the alpha-sarcin/ricin loop in the 28S rRNA. Mol. Cell. Biol.?1997, 17, 3373–3381.
[50]  Walchli, S.; Skanland, S.S.; Gregers, T.F.; Lauvrak, S.U.; Torgersen, M.L.; Ying, M.; Kuroda, S.; Maturana, A.; Sandvig, K. The Mitogen-activated protein kinase p38 links Shiga Toxin-dependent signaling and trafficking. Mol. Biol. Cell.?2008, 19, 95–104.
[51]  Lee, S.Y.; Lee, M.S.; Cherla, R.P.; Tesh, V.L. Shiga toxin 1 induces apoptosis through the endoplasmic reticulum stress response in human monocytic cells. Cell. Microbiol.?2008, 10, 770–780.
[52]  Walchli, S.; Aasheim, H.C.; Skanland, S.S.; Spilsberg, B.; Torgersen, M.L.; Rosendal, K.R.; Sandvig, K. Characterization of clathrin and Syk interaction upon Shiga toxin binding. Cell. Signal.?2009, 21, 1161–1168.
[53]  Takenouchi, H.; Kiyokawa, N.; Taguchi, T.; Matsui, J.; Katagiri, Y.U.; Okita, H.; Okuda, K.; Fujimoto, J. Shiga toxin binding to globotriaosyl ceramide induces intracellular signals that mediate cytoskeleton remodeling in human renal carcinoma-derived cells. J. Cell Sci.?2004, 117, 3911–3922.
[54]  Lauvrak, S.U.; Walchli, S.; Iversen, T.G.; Slagsvold, H.H.; Torgersen, M.L.; Spilsberg, B.; Sandvig, K. Shiga toxin regulates its entry in a Syk-dependent manner. Mol. Biol. Cell?2006, 17, 1096–1109.
[55]  Utskarpen, A.; Massol, R.; van Deurs, B.; Lauvrak, S.U.; Kirchhausen, T.; Sandvig, K. Shiga toxin increases formation of clathrin-coated pits through Syk kinase. PLoS One?2010, 5, e10944.
[56]  Cherla, R.P.; Lee, S.Y.; Mulder, R.A.; Lee, M.S.; Tesh, V.L. Shiga toxin 1-induced proinflammatory cytokine production is regulated by the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling pathway. Infect. Immun.?2009, 77, 3919–3931.
[57]  Lingwood, C.A. Verotoxins and their glycolipid receptors. Adv. Lipid. Res.?1993, 25, 189–211.
[58]  Lingwood, C.A. Role of verotoxin receptors in pathogenesis. Trends Microbiol.?1996, 4, 147–153.
[59]  Lingwood, C.A. Verotoxin/globotriaosyl ceramide recognition: Angiopathy, angiogenesis and antineoplasia. Biosci. Rep.?1999, 19, 345–354.
[60]  Boyd, B.; Lingwood, C. Verotoxin receptor glycolipid in human renal tissue. Nephron?1989, 51, 207–210.
[61]  Louise, C.B.; Obrig, T.G. Specific interaction of Escherichia coli O157:H7-derived Shiga-like toxin II with human renal endothelial cells. J. Infect. Dis.?1995, 172, 1397–1401.
[62]  Peter, M.G.; Lingwood, C.A. Apparent cooperativity in multivalent verotoxin-globotriaosyl ceramide binding: Kinetic and saturation binding studies with [(125)I]verotoxin. Biochim. Biophys. Acta.?2000, 1501, 116–124.
[63]  Abe, A.; Arend, L.J.; Lee, L.; Lingwood, C.; Brady, R.O.; Shayman, J.A. Glycosphingolipid depletion in fabry disease lymphoblasts with potent inhibitors of glucosylceramide synthase. Kidney Int.?2000, 57, 446–454.
[64]  Okuda, T.; Tokuda, N.; Numata, S.; Ito, M.; Ohta, M.; Kawamura, K.; Wiels, J.; Urano, T.; Tajima, O.; Furukawa, K. Targeted disruption of Gb3/CD77 synthase gene resulted in the complete deletion of globo-series glycosphingolipids and loss of sensitivity to verotoxins. J. Biol. Chem.?2006, 281, 10230–10235.
[65]  Mahfoud, R.; Manis, A.; Binnington, B.; Ackerley, C.; Lingwood, C.A. A major fraction of glycosphingolipids in model and cellular cholesterol containing membranes are undetectable by their binding proteins. J. Biol. Chem.?2010, 258, 36049–36059.
[66]  Lingwood, C.A.; Manis, A.; Mahfoud, R.; Khan, F.; Binnington, B.; Mylvaganam, M. New aspects of the regulation of glycosphingolipid receptor function. Chem. Phys. Lipid.?2010, 163, 27–35.
[67]  Lingwood, C.A.; Binnington, B.; Manis, A.; Branch, D.R. Globotriaosyl ceramide receptor function—Where membrane structure and pathology intersect. FEBS Lett.?2010, 584, 1879–1886.
[68]  Nutikka, A.; Lingwood, C. Generation of receptor-active, globotriaosyl ceramide/cholesterol lipid 'rafts' in vitro: A new assay to define factors affecting glycosphingolipid receptor activity. Glycoconj. J.?2004, 20, 33–38.
[69]  Kovbasnjuk, O.; Edidin, M.; Donowitz, M. Role of lipid rafts in Shiga toxin 1 interaction with the apical surface of Caco-2 cells. J. Cell Sci.?2001, 114, 4025–4031.
[70]  Smith, D.C.; Sillence, D.J.; Falguieres, T.; Jarvis, R.M.; Johannes, L.; Lord, J.M.; Platt, F.M.; Roberts, L.M. The association of Shiga-like toxin with detergent-resistant membranes is modulated by glucosylceramide and is an essential requirement in the endoplasmic reticulum for a cytotoxic effect. Mol. Biol. Cell.?2006, 17, 1375–1387.
[71]  Falguieres, T.; Romer, W.; Amessou, M.; Afonso, C.; Wolf, C.; Tabet, J.C.; Lamaze, C.; Johannes, L. Functionally different pools of Shiga toxin receptor, globotriaosyl ceramide, in HeLa cells. FEBS J.?2006, 273, 5205–5218. 17059464
[72]  Lencer, W.I.; Saslowsky, D. Raft trafficking of AB5 subunit bacterial toxins. Biochim. Biophys. Acta.?2005, 1746, 314–321.
[73]  Nutikka, A.; Binnington-Boyd, B.; Lingwood, C.A. Methods for the identification of host receptors for Shiga toxin. Meth. Mol. Med.?2003, 73, 197–208.
[74]  Cilmi, S.A.; Karalius, B.J.; Choy, W.; Smith, R.N.; Butterton, J.R. Fabry disease in mice protects against lethal disease caused by Shiga toxin-expressing enterohemorrhagic Escherichia coli. J. Infect. Dis.?2006, 194, 1135–1140.
[75]  Lingwood, C.A. Verotoxin-binding in human renal sections. Nephron?1994, 66, 21–28.
[76]  Kolling, G.L.; Obata, F.; Gross, L.K.; Obrig, T.G. Immunohistologic techniques for detecting the glycolipid Gb(3) in the mouse kidney and nervous system. Histochem. Cell Biol.?2008, 130, 157–164.
[77]  Valdivieso-Garcia, A.; MacLeod, D.L.; Clarke, R.C.; Gyles, C.L.; Lingwood, C.; Boyd, B.; Durette, A. Comparative cytotoxicity of purified Shiga-like toxin-IIe on porcine and bovine aortic endothelial and human colonic adenocarcinoma cells. J. Med. Microbiol.?1996, 45, 331–337.
[78]  Winter, K.R.; Stoffregen, W.C.; Dean-Nystrom, E.A. Shiga toxin binding to isolated porcine tissues and peripheral blood leukocytes. Infect. Immun.?2004, 72, 6680–6684.
[79]  Pohlenz, J.F.; Winter, K.R.; Dean-Nystrom, E.A. Shiga-toxigenic Escherichia coli-inoculated neonatal piglets develop kidney lesions that are comparable to those in humans with hemolytic-uremic syndrome. Infect. Immun.?2005, 73, 612–616.
[80]  Garcia, A.; Marini, R.P.; Feng, Y.; Vitsky, A.; Knox, K.A.; Taylor, N.S.; Schauer, D.B.; Fox, J.G. A naturally occurring rabbit model of enterohemorrhagic Escherichia coli-induced disease. J. Infect. Dis.?2002, 186, 1682–1686.
[81]  Garcia, A.; Bosques, C.J.; Wishnok, J.S.; Feng, Y.; Karalius, B.J.; Butterton, J.R.; Schauer, D.B.; Rogers, A.B.; Fox, J.G. Renal injury is a consistent finding in Dutch Belted rabbits experimentally infected with enterohemorrhagic Escherichia coli. J. Infect. Dis.?2006, 193, 1125–1134.
[82]  Panda, A.; Tatarov, I.; Melton-Celsa, A.R.; Kolappaswamy, K.; Kriel, E.H.; Petkov, D.; Coksaygan, T.; Livio, S.; McLeod, C.G.; Nataro, J.P.; O'Brien, A.D.; DeTolla, L.J. Escherichia coli O157:H7 infection in Dutch belted and New Zealand white rabbits. Comp. Med.?2010, 60, 31–37.
[83]  Richardson, S.E.; Rotman, T.A.; Jay, V.; Smith, C.R.; Becker, L.E.; Petric, M.; Olivieri, N.F.; Karmali, M.A. Experimental verocytotoxemia in rabbits. Infect. Immun.?1992, 60, 4154–4167.
[84]  Psotka, M.A.; Obata, F.; Kolling, G.L.; Gross, L.K.; Saleem, M.A.; Satchell, S.C.; Mathieson, P.W.; Obrig, T.G. Shiga toxin 2 targets the murine renal collecting duct epithelium. Infect. Immun.?2009, 77, 959–969.
[85]  Hughes, A.K.; Ergonul, Z.; Stricklett, P.K.; Kohan, D.E. Molecular basis for high renal cell sensitivity to the cytotoxic effects of shigatoxin-1: Upregulation of globotriaosylceramide expression. J. Am. Soc. Nephrol.?2002, 13, 2239–2245.
[86]  Hughes, A.K.; Stricklett, P.K.; Kohan, D.E. Cytotoxic effect of Shiga toxin-1 on human proximal tubule cells. Kidney Int.?1998, 54, 426–437.
[87]  Nestoridi, E.; Kushak, R.I.; Duguerre, D.; Grabowski, E.F.; Ingelfinger, J.R. Up-regulation of tissue factor activity on human proximal tubular epithelial cells in response to Shiga toxin. Kidney Int.?2005, 67, 2254–2266.
[88]  Melton-Celsa, A.R.; O'Brien, A.D. Animal models for STEC-mediated disease. Meth. Mol. Med.?2003, 73, 291–305.
[89]  Karpman, D.; Connell, H.; Svensson, M.; Scheutz, F.; Alm, P.; Svanborg, C. The role of lipopolysaccharide and Shiga-like toxin in a mouse model of Escherichia coli O157:H7 infection. J. Infect. Dis.?1997, 175, 611–620.
[90]  Sauter, K.A.; Melton-Celsa, A.R.; Larkin, K.; Troxell, M.L.; O'Brien, A.D.; Magun, B.E. Mouse model of hemolytic-uremic syndrome caused by endotoxin-free Shiga toxin 2 (Stx2) and protection from lethal outcome by anti-Stx2 antibody. Infect. Immun.?2008, 76, 4469–4478.
[91]  Lindgren, S.W.; Melton, A.R.; O'Brien, A.D. Virulence of enterohemorrhagic Escherichia coli O91:H21 clinical isolates in an orally infected mouse model. Infect. Immun.?1993, 61, 3832–3842.
[92]  Keepers, T.R.; Psotka, M.A.; Gross, L.K.; Obrig, T.G. A murine model of HUS: Shiga toxin with lipopolysaccharide mimics the renal damage and physiologic response of human disease. J. Am. Soc. Nephrol.?2006, 17, 3404–3414.
[93]  Eaton, K.A.; Friedman, D.I.; Francis, G.J.; Tyler, J.S.; Young, V.B.; Haeger, J.; Abu-Ali, G.; Whittam, T.S. Pathogenesis of renal disease due to enterohemorrhagic Escherichia coli in germ-free mice. Infect. Immun.?2008, 76, 3054–3063.
[94]  Melton-Celsa, A.R.; Darnell, S.C.; O'Brien, A.D. Activation of Shiga-like toxins by mouse and human intestinal mucus correlates with virulence of enterohemorrhagic Escherichia coli O91:H21 isolates in orally infected, streptomycin-treated mice. Infect. Immun.?1996, 64, 1569–1576.
[95]  Wadolkowski, E.A.; Burris, J.A.; O'Brien, A.D. Mouse model for colonization and disease caused by enterohemorrhagic Escherichia coli O157:H7. Infect. Immun.?1990, 58, 2438–2445.
[96]  Taylor, F.B., Jr.; Tesh, V.L.; DeBault, L.; Li, A.; Chang, A.C.; Kosanke, S.D.; Pysher, T.J.; Siegler, R.L. Characterization of the baboon responses to Shiga-like toxin: Descriptive study of a new primate model of toxic responses to Stx-1. Am. J. Pathol.?1999, 154, 1285–1299.
[97]  Siegler, R.L.; Pysher, T.J.; Lou, R.; Tesh, V.L.; Taylor, F.B., Jr. Response to Shiga toxin-1, with and without lipopolysaccharide, in a primate model of hemolytic uremic syndrome. Am. J. Nephrol.?2001, 21, 420–425.
[98]  Siegler, R.L.; Pysher, T.J.; Tesh, V.L.; Taylor, F.B., Jr. Response to single and divided doses of Shiga toxin-1 in a primate model of hemolytic uremic syndrome. J. Am. Soc. Nephrol.?2001, 12, 1458–1467.
[99]  Siegler, R.L.; Obrig, T.G.; Pysher, T.J.; Tesh, V.L.; Denkers, N.D.; Taylor, F.B. Response to Shiga toxin 1 and 2 in a baboon model of hemolytic uremic syndrome. Pediatr. Nephrol.?2003, 18, 92–96.
[100]  Stearns-Kurosawa, D.J.; Collins, V.; Freeman, S.; Tesh, V.L.; Kurosawa, S. Distinct physiologic and inflammatory responses elicited in baboons after challenge with Shiga toxin type 1 or 2 from enterohemorrhagic Escherichia coli. Infect. Immun.?2010, 78, 2497–2504.
[101]  Wadolkowski, E.A.; Sung, L.M.; Burris, J.A.; Samuel, J.E.; O'Brien, A.D. Acute renal tubular necrosis and death of mice orally infected with Escherichia coli strains that produce Shiga-like toxin type II. Infect. Immun.?1990, 58, 3959–3965.
[102]  Pickering, M.C.; de Jorge, E.G.; Martinez-Barricarte, R.; Recalde, S.; Garcia-Layana, A.; Rose, K.L.; Moss, J.; Walport, M.J.; Cook, H.T.; de Cordoba, S.R.; Botto, M. Spontaneous hemolytic uremic syndrome triggered by complement factor H lacking surface recognition domains. J. Exp. Med.?2007, 204, 1249–1256.
[103]  Kaneko, K.; Kiyokawa, N.; Ohtomo, Y.; Nagaoka, R.; Yamashiro, Y.; Taguchi, T.; Mori, T.; Fujimoto, J.; Takeda, T. Apoptosis of renal tubular cells in Shiga-toxin-mediated hemolytic uremic syndrome. Nephron?2001, 87, 182–185.
[104]  Harel, Y.; Silva, M.; Giroir, B.; Weinberg, A.; Cleary, T.B.; Beutler, B. A reporter transgene indicates renal-specific induction of tumor necrosis factor (TNF) by shiga-like toxin.Possible involvement of TNF in hemolytic uremic syndrome. J. Clin. Invest.?1993, 92, 2110–2116.
[105]  Keepers, T.R.; Gross, L.K.; Obrig, T.G. Monocyte chemoattractant protein 1, macrophage inflammatory protein 1 alpha, and RANTES recruit macrophages to the kidney in a mouse model of hemolytic-uremic syndrome. Infect. Immun.?2007, 75, 1229–1236. 17220320
[106]  Guessous, F.; Marcinkiewicz, M.; Polanowska-Grabowska, R.; Kongkhum, S.; Heatherly, D.; Obrig, T.; Gear, A.R. Shiga toxin 2 and lipopolysaccharide induce human microvascular endothelial cells to release chemokines and factors that stimulate platelet function. Infect. Immun.?2005, 73, 8306–8316.
[107]  DeGrandis, S.; Law, H.; Brunton, J.; Gyles, C.; Lingwood, C.A. Globotetraosylceramide is recognized by the pig edema disease toxin. J. Biol. Chem.?1989, 264, 12520–12525.
[108]  Dean-Nystrom, E.A.; Pohlenz, J.F.; Moon, H.W.; O'Brien, A.D. Escherichia coli O157:H7 causes more-severe systemic disease in suckling piglets than in colostrum-deprived neonatal piglets. Infect. Immun.?2000, 68, 2356–2358.
[109]  Donohue-Rolfe, A.; Kondova, I.; Oswald, S.; Hutto, D.; Tzipori, S. Escherichia coli O157:H7 strains that express Shiga toxin (Stx) 2 alone are more neurotropic for gnotobiotic piglets than are isotypes producing only Stx1 or both Stx1 and Stx2. J. Infect. Dis.?2000, 181, 1825–1829.
[110]  Cornick, N.A.; Matise, I.; Samuel, J.E.; Bosworth, B.T.; Moon, H.W. Shiga toxin-producing Escherichia coli infection: Temporal and quantitative relationships among colonization, toxin production, and systemic disease. J. Infect. Dis.?2000, 181, 242–251. 10608773
[111]  Clayton, F.; Pysher, T.J.; Lou, R.; Kohan, D.E.; Denkers, N.D.; Tesh, V.L.; Taylor, F.B., Jr.; Siegler, R.L. Lipopolysaccharide upregulates renal shiga toxin receptors in a primate model of hemolytic uremic syndrome. Am. J. Nephrol.?2005, 25, 536–540.
[112]  Lingwood, C.A.; Mylvaganam, M. Lipid modulation of glycosphingolipid (GSL) receptors: Soluble GSL mimics provide new probes of GSL receptor function. Meth. Enzymol.?2003, 363, 264–283.
[113]  Mahfoud, R.; Manis, A.; Lingwood, C.A. Fatty acid-dependent globotriaosyl ceramide receptor function in detergent resistant model membranes. J. Lipid. Res.?2009, 50, 1744–1755.
[114]  Bens, M.; Vandewalle, A. Cell models for studying renal physiology. Pflugers Arch.?2008, 457, 1–15.
[115]  Zoja, C.; Buelli, S.; Morigi, M. Shiga toxin-associated hemolytic uremic syndrome: Pathophysiology of endothelial dysfunction. Pediatr. Nephrol.?2010, 25, 2231–2240.
[116]  Kaplan, B.S.; Cleary, T.G.; Obrig, T.G. Recent advances in understanding the pathogenesis of the hemolytic uremic syndromes. Pediatr. Nephrol.?1990, 4, 276–283.
[117]  Kaye, S.A.; Louise, C.B.; Boyd, B.; Lingwood, C.A.; Obrig, T.G. Shiga toxin-associated hemolytic uremic syndrome: Interleukin-1 beta enhancement of Shiga toxin cytotoxicity toward human vascular endothelial cells in vitro. Infect. Immun.?1993, 61, 3886–3891. 8359910
[118]  Obrig, T.G.; Louise, C.B.; Lingwood, C.A.; Boyd, B.; Barley-Maloney, L.; Daniel, T.O. Endothelial heterogeneity in Shiga toxin receptors and responses. J. Biol Chem.?1993, 268, 15484–15488.
[119]  Ohmi, K.; Kiyokawa, N.; Takeda, T.; Fujimoto, J. Human microvascular endothelial cells are strongly sensitive to Shiga toxins. Biochem. Biophys. Res. Commun.?1998, 251, 137–141.
[120]  Hirschberg, R.; Wang, S.; Mitu, G.M. Functional symbiosis between endothelium and epithelial cells in glomeruli. Cell Tissue Res.?2008, 331, 485–493.
[121]  Muthing, J.; Schweppe, C.H.; Karch, H.; Friedrich, A.W. Shiga toxins, glycosphingolipid diversity, and endothelial cell injury. Thromb. Haemost.?2009, 101, 252–264. 19190807
[122]  Pysher, T.J.; Siegler, R.L.; Tesh, V.L.; Taylor, F.B., Jr. von Willebrand Factor expression in a Shiga toxin-mediated primate model of hemolytic uremic syndrome. Pediatr. Dev. Pathol.?2002, 5, 472–479.
[123]  Siegler, R.L.; Pysher, T.J.; Tesh, V.L.; Denkers, N.D.; Taylor, F.B. Prophylactic heparinization is ineffective in a primate model of hemolytic uremic syndrome. Pediatr. Nephrol.?2002, 17, 1053–1058.
[124]  Richardson, S.E.; Karmali, M.A.; Becker, L.E.; Smith, C.R. The histopathology of the hemolytic uremic syndrome associated with verocytotoxin-producing Escherichia coli infections. Hum. Pathol.?1988, 19, 1102–1108.
[125]  Mizuguchi, M.; Tanaka, S.; Fujii, I.; Tanizawa, H.; Suzuki, Y.; Igarashi, T.; Yamanaka, T.; Takeda, T.; Miwa, M. Neuronal and vascular pathology produced by verocytotoxin 2 in the rabbit central nervous system. Acta Neuropathol.?1996, 91, 254–262.
[126]  Mizuguchi, M.; Sugatani, J.; Maeda, T.; Momoi, T.; Arima, K.; Takashima, S.; Takeda, T.; Miwa, M. Cerebrovascular damage in young rabbits after intravenous administration of Shiga toxin 2. Acta Neuropathol.?2001, 102, 306–312.
[127]  Chaisri, U.; Nagata, M.; Kurazono, H.; Horie, H.; Tongtawe, P.; Hayashi, H.; Watanabe, T.; Tapchaisri, P.; Chongsa-nguan, M.; Chaicumpa, W. Localization of Shiga toxins of enterohaemorrhagic Escherichia coli in kidneys of paediatric and geriatric patients with fatal haemolytic uraemic syndrome. Microb. Pathog.?2001, 31, 59–67.
[128]  Haraldsson, B.; Jeansson, M. Glomerular filtration barrier. Curr. Opin. Nephrol. Hypertens.?2009, 18, 331–335.
[129]  Fogo, A.B. The multi-talented podocyte. Nephrol. Dial. Transplant.?2009, 24, 3269–3270.
[130]  Eremina, V.; Jefferson, J.A.; Kowalewska, J.; Hochster, H.; Haas, M.; Weisstuch, J.; Richardson, C.; Kopp, J.B.; Kabir, M.G.; Backx, P.H.; Gerber, H.P.; Ferrara, N.; Barisoni, L.; Alpers, C.E.; Quaggin, S.E. VEGF inhibition and renal thrombotic microangiopathy. N. Engl. J. Med.?2008, 358, 1129–1136.
[131]  Eremina, V.; Sood, M.; Haigh, J.; Nagy, A.; Lajoie, G.; Ferrara, N.; Gerber, H.P.; Kikkawa, Y.; Miner, J.H.; Quaggin, S.E. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J. Clin. Invest.?2003, 111, 707–716.
[132]  Sison, K.; Eremina, V.; Baelde, H.; Min, W.; Hirashima, M.; Fantus, I.G.; Quaggin, S.E. Glomerular structure and function require paracrine, not autocrine, VEGF-VEGFR-2 Signaling. J. Am. Soc. Nephrol.?2010, 21, 1691–1701. 20688931
[133]  Muller-Deile, J.; Worthmann, K.; Saleem, M.; Tossidou, I.; Haller, H.; Schiffer, M. The balance of autocrine VEGF-A and VEGF-C determines podocyte survival. Am. J. Physiol. Renal Physiol.?2009, 297, F1656–F1667.
[134]  Reidy, K.; Kaskel, F.J. Pathophysiology of focal segmental glomerulosclerosis. Pediatr. Nephrol.?2007, 22, 350–354.
[135]  Marshall, S.M. The podocyte: A potential therapeutic target in diabetic nephropathy? Curr. Pharm. Des.?2007, 13, 2713–2720.
[136]  D'Agati, V.D. Podocyte injury in focal segmental glomerulosclerosis: Lessons from animal models (a play in five acts). Kidney Int.?2008, 73, 399–406.
[137]  Henao, D.E.; Mathieson, P.W.; Saleem, M.A.; Bueno, J.C.; Cadavid, A. A novel renal perspective of preeclampsia: A look from the podocyte. Nephrol. Dial. Transplant.?2007, 22, 1477.
[138]  Collino, F.; Bussolati, B.; Gerbaudo, E.; Marozio, L.; Pelissetto, S.; Benedetto, C.; Camussi, G. Preeclamptic sera induce nephrin shedding from podocytes through endothelin-1 release by endothelial glomerular cells. Am. J. Physiol. Renal Physiol.?2008, 294, F1185–F1194.
[139]  Morigi, M.; Buelli, S.; Zanchi, C.; Longaretti, L.; Macconi, D.; Benigni, A.; Moioli, D.; Remuzzi, G.; Zoja, C. Shigatoxin-induced endothelin-1 expression in cultured podocytes autocrinally mediates actin remodeling. Am. J. Pathol.?2006, 169, 1965–1975.
[140]  De Petris, L.; Patrick, J.; Christen, E.; Trachtman, H. Urinary podocyte mRNA excretion in children with D+HUS: A potential marker of long-term outcome. Ren Fail?2006, 28, 475–482.
[141]  Trachtman, H.; Christen, E.; Cnaan, A.; Patrick, J.; Mai, V.; Mishra, J.; Jain, A.; Bullington, N.; Devarajan, P. Urinary neutrophil gelatinase-associated lipocalcin in D+HUS: A novel marker of renal injury. Pediatr. Nephrol.?2006, 21, 989–994.
[142]  Ray, P.E.; Liu, X.H. Pathogenesis of Shiga toxin-induced hemolytic uremic syndrome. Pediatr. Nephrol.?2001, 16, 823–839.
[143]  Simon, M.; Cleary, T.G.; Hernandez, J.D.; Abboud, H.E. Shiga toxin 1 elicits diverse biologic responses in mesangial cells. Kidney Int.?1998, 54, 1117–1127.
[144]  Andreoli, S.P.; Trachtman, H.; Acheson, D.W.; Siegler, R.L.; Obrig, T.G. Hemolytic uremic syndrome: Epidemiology, pathophysiology, and therapy. Pediatr. Nephrol.?2002, 17, 293–298. 11956886
[145]  Robinson, L.A.; Hurley, R.M.; Lingwood, C.; Matsell, D.G. Escherichia coli verotoxin binding to human paediatric glomerular mesangial cells. Pediatr. Nephrol.?1995, 9, 700–704.
[146]  Van Setten, P.A.; van Hinsbergh, V.W.; Van den Heuvel, L.P.; van der Velden, T.J.; van de Kar, N.C.; Krebbers, R.J.; Karmali, M.A.; Monnens, L.A. Verocytotoxin inhibits mitogenesis and protein synthesis in purified human glomerular mesangial cells without affecting cell viability: Evidence for two distinct mechanisms. J. Am. Soc. Nephrol.?1997, 8, 1877–1888.
[147]  Te Loo, D.M.; Monnens, L.; van der Velden, T.; Karmali, M.; van den Heuvel, L.; van Hinsbergh, V. Shiga toxin-1 affects nitric oxide production by human glomerular endothelial and mesangial cells. Pediatr. Nephrol.?2006, 21, 1815–1823.
[148]  Hughes, A.K.; Stricklett, P.K.; Kohan, D.E. Shiga toxin-1 regulation of cytokine production by human proximal tubule cells. Kidney Int.?1998, 54, 1093–1106.
[149]  Wilson, C.; Foster, G.H.; Bitzan, M. Silencing of Bak ameliorates apoptosis of human proximal tubular epithelial cells by Escherichia coli-derived Shiga toxin 2. Infection?2005, 33, 362–367.
[150]  Kodama, T.; Nagayama, K.; Yamada, K.; Ohba, Y.; Akeda, Y.; Honda, T. Induction of apoptosis in human renal proximal tubular epithelial cells by Escherichia coli verocytotoxin 1 in vitro. Med. Microbiol. Immunol.?1999, 188, 73–78, doi:10.1007/s004300050107. 10753058
[151]  Silberstein, C.; Pistone Creydt, V.; Gerhardt, E.; Nunez, P.; Ibarra, C. Inhibition of water absorption in human proximal tubular epithelial cells in response to Shiga toxin-2. Pediatr. Nephrol.?2008, 23, 1981–1990.
[152]  Lazzara, M.J.; Deen, W.M. Model of albumin reabsorption in the proximal tubule. Am. J. Phys. Renal Phys.?2007, 292, F430–F439.
[153]  Morigi, M.; Macconi, D.; Zoja, C.; Donadelli, R.; Buelli, S.; Zanchi, C.; Ghilardi, M.; Remuzzi, G. Protein overload-induced NF-kappaB activation in proximal tubular cells requires H(2)O(2) through a PKC-dependent pathway. J. Am. Soc. Nephrol.?2002, 13, 1179–1189.
[154]  Zoja, C.; Donadelli, R.; Colleoni, S.; Figliuzzi, M.; Bonazzola, S.; Morigi, M.; Remuzzi, G. Protein overload stimulates RANTES production by proximal tubular cells depending on NF-kappa B activation. Kidney Int.?1998, 53, 1608–1615.
[155]  Donadelli, R.; Zanchi, C.; Morigi, M.; Buelli, S.; Batani, C.; Tomasoni, S.; Corna, D.; Rottoli, D.; Benigni, A.; Abbate, M.; Remuzzi, G.; Zoja, C. Protein overload induces fractalkine upregulation in proximal tubular cells through nuclear factor kappaB- and p38 mitogen-activated protein kinase-dependent pathways. J. Am. Soc. Nephrol.?2003, 14, 2436–2446.
[156]  Windschiegl, B.; Orth, A.; Romer, W.; Berland, L.; Stechmann, B.; Bassereau, P.; Johannes, L.; Steinem, C. Lipid reorganization induced by Shiga toxin clustering on planar membranes. PLoS One.?2009, 4, e6238.
[157]  Johannes, L.; Romer, W. Shiga toxins—From cell biology to biomedical applications. Nat. Rev. Microbiol.?2010, 8, 105–116.
[158]  Ludwig, K.; Sarkim, V.; Bitzan, M.; Karmali, M.A.; Bobrowski, C.; Ruder, H.; Laufs, R.; Sobottka, I.; Petric, M.; Karch, H.; Muller-Wiefel, D.E. Shiga toxin-producing Escherichia coli infection and antibodies against Stx2 and Stx1 in household contacts of children with enteropathic hemolytic-uremic syndrome. J. Clin. Microbiol.?2002, 40, 1773–1782.
[159]  Karmali, M.A.; Mascarenhas, M.; Petric, M.; Dutil, L.; Rahn, K.; Ludwig, K.; Arbus, G.S.; Michel, P.; Sherman, P.M.; Wilson, J.; Johnson, R.; Kaper, J.B. Age-specific frequencies of antibodies to Escherichia coli verocytotoxins (Shiga toxins) 1 and 2 among urban and rural populations in southern Ontario. J. Infect. Dis.?2003, 188, 1724–1729.
[160]  Bitzan, M.; Moebius, E.; Ludwig, K.; Muller-Wiefel, D.E.; Heesemann, J.; Karch, H. High incidence of serum antibodies to Escherichia coli O157 lipopolysaccharide in children with hemolytic-uremic syndrome. J. Pediatr.?1991, 119, 380–385.
[161]  Bitzan, M.; Klemt, M.; Steffens, R.; Muller-Wiefel, D.E. Differences in verotoxin neutralizing activity of therapeutic immunoglobulins and sera from healthy controls. Infection?1993, 21, 140–145.
[162]  Boulanger, J.; Petric, M.; Lingwood, C.; Law, H.; Roscoe, M.; Karmali, M. Neutralization receptor-based immunoassay for detection of neutralizing antibodies to Escherichia coli verocytotoxin 1. J. Clin. Microbiol.?1990, 28, 2830–2833.
[163]  Vandewalle, A. Toll-like receptors and renal bacterial infections. Chang Gung Med. J.?2008, 31, 525–537.
[164]  Wang, W.; Faubel, S.; Ljubanovic, D.; Mitra, A.; Falk, S.A.; Kim, J.; Tao, Y.; Soloviev, A.; Reznikov, L.L.; Dinarello, C.A.; Schrier, R.W.; Edelstein, C.L. Endotoxemic acute renal failure is attenuated in caspase-1-deficient mice. Am. J. Phys. Renal Phys.?2005, 288, F997–F1004.
[165]  Harrison, L.M.; van Haaften, W.C.; Tesh, V.L. Regulation of proinflammatory cytokine expression by Shiga toxin 1 and/or lipopolysaccharides in the human monocytic cell line THP-1. Infect. Immun.?2004, 72, 2618–2627.
[166]  Beutler, B.A.; Milsark, I.W.; Cerami, A. Cachectin/tumor necrosis factor: Production, distribution, and metabolic fate in vivo. J. Immunol.?1985, 135, 3972–3977. 2999236
[167]  Han, J.H.; Beutler, B.; Huez, G. Complex regulation of tumor necrosis factor mRNA turnover in lipopolysaccharide-activated macrophages. Biochim. Biophys. Acta.?1991, 1090, 22–28.
[168]  Knotek, M.; Rogachev, B.; Wang, W.; Ecder, T.; Melnikov, V.; Gengaro, P.E.; Esson, M.; Edelstein, C.L.; Dinarello, C.A.; Schrier, R.W. Endotoxemic renal failure in mice: Role of tumor necrosis factor independent of inducible nitric oxide synthase. Kidney Int.?2001, 59, 2243–2249.
[169]  Anders, H.J. Toll-like receptors and danger signaling in kidney injury. J. Am. Soc. Nephrol.?2010, 21, 1270–1274.
[170]  Vielhauer, V.; Kulkarni, O.; Reichel, C.A.; Anders, H.J. Targeting the recruitment of monocytes and macrophages in renal disease. Semin. Nephrol.?2010, 30, 318–333.
[171]  Cambi, V.; David, S. Basic therapeutic requirements in the treatment of sepsis in acute renal failure. Nephrol. Dial. Transplant.?1994, 9, 183–186.
[172]  de Klaver, M.J.; Weingart, G.S.; Obrig, T.G.; Rich, G.F. Local anesthetic-induced protection against lipopolysaccharide-induced injury in endothelial cells: The role of mitochondrial adenosine triphosphate-sensitive potassium channels. Anesth. Analg.?2006, 102, 1108–1113.
[173]  Dauphinee, S.M.; Karsan, A. Lipopolysaccharide signaling in endothelial cells. Lab Invest.?2006, 86, 9–22.
[174]  Harrison, L.M.; Cherla, R.P.; van den Hoogen, C.; van Haaften, W.C.; Lee, S.Y.; Tesh, V.L. Comparative evaluation of apoptosis induced by Shiga toxin 1 and/or lipopolysaccharides in human monocytic and macrophage-like cells. Microb. Pathog.?2005, 38, 63–76.
[175]  Bannerman, D.D.; Goldblum, S.E. Mechanisms of bacterial lipopolysaccharide-induced endothelial apoptosis. Am. J. Phys. Lung Cell Mol. Phys.?2003, 284, L899–914.
[176]  Hull, C.; McLean, G.; Wong, F.; Duriez, P.J.; Karsan, A. Lipopolysaccharide signals an endothelial apoptosis pathway through TNF receptor-associated factor 6-mediated activation of c-Jun NH2-terminal kinase. J. Immunol.?2002, 169, 2611–2618.
[177]  Stahl, A.L.; Svensson, M.; Morgelin, M.; Svanborg, C.; Tarr, P.I.; Mooney, J.C.; Watkins, S.L.; Johnson, R.; Karpman, D. Lipopolysaccharide from enterohemorrhagic Escherichia coli binds to platelets through TLR4 and CD62 and is detected on circulating platelets in patients with hemolytic uremic syndrome. Blood?2006, 108, 167–176.
[178]  Stahl, A.L.; Sartz, L.; Nelsson, A.; Bekassy, Z.D.; Karpman, D. Shiga toxin and lipopolysaccharide induce platelet-leukocyte aggregates and tissue factor release, a thrombotic mechanism in hemolytic uremic syndrome. PLoS One?2009, 4, e6990.
[179]  Karpman, D.; Manea, M.; Vaziri-Sani, F.; Stahl, A.L.; Kristoffersson, A.C. Platelet activation in hemolytic uremic syndrome. Semin. Thromb. Hemost.?2006, 32, 128–145.
[180]  Louise, C.B.; Obrig, T.G. Shiga toxin-associated hemolytic uremic syndrome: Combined cytotoxic effects of shiga toxin and lipopolysaccharide (endotoxin) on human vascular endothelial cells in vitro. Infect. Immun.?1992, 60, 1536–1543. 1548077
[181]  Louise, C.B.; Tran, M.C.; Obrig, T.G. Sensitization of human umbilical vein endothelial cells to Shiga toxin: Involvement of protein kinase C and NF-kappaB. Infect. Immun.?1997, 65, 3337–3344.
[182]  Ghosh, S.A.; Polanowska-Grabowska, R.K.; Fujii, J.; Obrig, T.; Gear, A.R. Shiga toxin binds to activated platelets. J. Thromb. Haemost.?2004, 2, 499–506.
[183]  Viisoreanu, D.; Polanowska-Grabowska, R.; Suttitanamongkol, S.; Obrig, T.G.; Gear, A.R. Human platelet aggregation is not altered by Shiga toxins 1 or 2. Thromb. Res.?2000, 98, 403–410.
[184]  Guessous, F.; Marcinkiewicz, M.; Polanowska-Grabowska, R.; Keepers, T.R.; Obrig, T.; Gear, A.R. Shiga toxin 2 and lipopolysaccharide cause monocytic THP-1 cells to release factors which activate platelet function. Thromb. Haemost.?2005, 94, 1019–1027.
[185]  van de Kar, N.C.; Monnens, L.A.; Karmali, M.A.; van Hinsbergh, V.W. Tumor necrosis factor and interleukin-1 induce expression of the verocytotoxin receptor globotriaosylceramide on human endothelial cells: Implications for the pathogenesis of the hemolytic uremic syndrome. Blood?1992, 80, 2755–2764.
[186]  Palermo, M.; Alves-Rosa, F.; Rubel, C.; Fernandez, G.C.; Fernandez-Alonso, G.; Alberto, F.; Rivas, M.; Isturiz, M. Pretreatment of mice with lipopolysaccharide (LPS) or IL-1beta exerts dose-dependent opposite effects on Shiga toxin-2 lethality. Clin. Exp. Immunol.?2000, 119, 77–83.
[187]  Ikeda, M.; Ito, S.; Honda, M. Hemolytic uremic syndrome induced by lipopolysaccharide and Shiga-like toxin. Pediatr. Nephrol.?2004, 19, 485–489.
[188]  Landoni, V.I.; de Campos-Nebel, M.; Schierloh, P.; Calatayud, C.; Fernandez, G.C.; Ramos, M.V.; Rearte, B.; Palermo, M.S.; Isturiz, M.A. Shiga toxin 1-induced inflammatory response in lipopolysaccharide-sensitized astrocytes is mediated by endogenous tumor necrosis factor alpha. Infect. Immun.?2010, 78, 1193–1201.
[189]  Brigotti, M.; Tazzari, P.L.; Ravanelli, E.; Carnicelli, D.; Barbieri, S.; Rocchi, L.; Arfilli, V.; Scavia, G.; Ricci, F.; Bontadini, A.; Alfieri, R.R.; Petronini, P.G.; Pecoraro, C.; Tozzi, A.E.; Caprioli, A. Endothelial damage induced by Shiga toxins delivered by neutrophils during transmigration. J. Leukoc. Biol.?2010, 88, 201–210.
[190]  Fernandez, G.C.; Rubel, C.; Dran, G.; Gomez, S.; Isturiz, M.A.; Palermo, M.S. Shiga toxin-2 induces neutrophilia and neutrophil activation in a murine model of hemolytic uremic syndrome. Clin. Immunol.?2000, 95, 227–234.
[191]  Fernandez, G.C.; Gomez, S.A.; Ramos, M.V.; Bentancor, L.V.; Fernandez-Brando, R.J.; Landoni, V.I.; Lopez, L.; Ramirez, F.; Diaz, M.; Alduncin, M.; Grimoldi, I.; Exeni, R.; Isturiz, M.A.; Palermo, M.S. The functional state of neutrophils correlates with the severity of renal dysfunction in children with hemolytic uremic syndrome. Pediatr. Res.?2007, 61, 123–128.
[192]  Zarbock, A.; Polanowska-Grabowska, R.K.; Ley, K. Platelet-neutrophil-interactions: Linking hemostasis and inflammation. Blood Rev.?2006.
[193]  Geelen, J.M.; van der Velden, T.J.; Te Loo, D.M.; Boerman, O.C.; van den Heuvel, L.P.; Monnens, L.A. Lack of specific binding of Shiga-like toxin (verocytotoxin) and non-specific interaction of Shiga-like toxin 2 antibody with human polymorphonuclear leucocytes. Nephrol. Dial. Transplant.?2007, 22, 749–755.
[194]  Roche, J.K.; Keepers, T.R.; Gross, L.K.; Seaner, R.M.; Obrig, T.G. CXCL1/KC and CXCL2/MIP-2 Are Critical Effectors and Potential Targets for Therapy of Escherichia coli O157:H7-Associated Renal Inflammation. Am. J. Pathol.?2007, 170, 526–537.
[195]  Tesh, V.L.; Ramegowda, B.; Samuel, J.E. Purified Shiga-like toxins induce expression of proinflammatory cytokines from murine peritoneal macrophages. Infect. Immun.?1994, 62, 5085–5094.
[196]  van Setten, P.A.; Monnens, L.A.; Verstraten, R.G.; van den Heuvel, L.P.; van Hinsbergh, V.W. Effects of verocytotoxin-1 on nonadherent human monocytes: Binding characteristics, protein synthesis, and induction of cytokine release. Blood?1996, 88, 174–183. 8704172
[197]  Foster, G.H.; Armstrong, C.S.; Sakiri, R.; Tesh, V.L. Shiga toxin-induced tumor necrosis factor alpha expression: Requirement for toxin enzymatic activity and monocyte protein kinase C and protein tyrosine kinases. Infect. Immun.?2000, 68, 5183–5189.
[198]  Cameron, P.; Smith, S.J.; Giembycz, M.A.; Rotondo, D.; Plevin, R. Verotoxin activates mitogen-activated protein kinase in human peripheral blood monocytes: Role in apoptosis and proinflammatory cytokine release. Br. J. Pharmacol.?2003, 140, 1320–1330.
[199]  Gear, A.R.; Camerini, D. Platelet chemokines and chemokine receptors: Linking hemostasis, inflammation, and host defense Microcirculation. ?2003, 10, 335–350.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133