全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Microstructure and Wear Resistance of Laser Cladding NiCrWB Alloy Coating on Cu Substrate
铜表面激光熔覆NiCrWB合金的组织结构与耐磨性能研究

Keywords: 激光熔覆,NiCrWB合金,超音速火焰喷涂,磨损

Full-Text   Cite this paper   Add to My Lib

Abstract:

NiCrWB cladding layer was prepared by high energy density laser-remelting of NiCrWB spraying layer from high velocity air fuel spray (HVAFS). The phase compositions, structures and patterns of the two layers were investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM) and optical microscopy (OM). The worn surface morphologies of the two layers were examined by SEM and OM, and the sliding wear mechanism of the cladding layer and the spraying layer were suggested. In addition, the effects of the phase structure and pattern of the layers on the wear-resistance were investigated. The result showed that the structure was the main factor affecting the wear-resistance of the layers. The cladding layer had a lower microhardness than that of the spraying layer, while the wear-resistance of the cladding layer was better than that of the spaying layer because of the dense and uniform structure and few of defects. Many fatigue cracks, ruts, abrasive particles and deep grinding cracks were found on the worn surfaces of the spraying layer It is deduced that cracks originated from surface layer and subsurface layer coalesced under the cyclic load and resulted in detachment of wear particles. However, the cracks in the cladding layer were generated by the plastic deformation of the abrasive surfaces.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133