Resistive oxygen sensors are an inexpensive alternative to the classical potentiometric zirconia oxygen sensor, especially for use in harsh environments and at temperatures of several hundred °C or even higher. This device-oriented paper gives a historical overview on the development of these sensor materials. It focuses especially on approaches to obtain a temperature independent behavior. It is shown that although in the past 40 years there have always been several research groups working concurrently with resistive oxygen sensors, novel ideas continue to emerge today with respect to improvements of the sensor response time, the temperature dependence, the long-term stability or the manufacture of the devices themselves using novel techniques for the sensitive films. Materials that are the focus of this review are metal oxides; especially titania, titanates, and ceria-based formulations.
References
[1]
Twigg, MV. Progress and future challenges in controlling automotive exhaust gas emissions. Appl. Catal. B Environ 2007, 70, 2–15, doi:10.1016/j.apcatb.2006.02.029.
[2]
Riegel, J; Neumann, H; Wiedenmann, H-M. Exhaust gas sensors for automotive emission control. Solid State Ionics 2002, 152–153, 783–800.
[3]
Baunach, T; Sch?nzlin, K; Diehl, L. Sauberes Abgas durch Keramiksensoren. Physik J 2006, 5, 33–38.
Smyth, DM. Titanium dioxide. In The Defect Chemistry of Metal Oxides; Oxford University Press: New York, NY, USA, 2000; pp. 217–238.
[6]
Tien, TY; Stadler, HL; Gibbons, EF; Zacmanidis, PJ. TiO2 as an air-to-fuel ratio sensor for automobile exhausts. Ceram. Bull 1975, 54, 280–282.
[7]
Kaiser, WJ; Logothetis, EM. Exhaust gas oxygen sensors based on TiO2. SAE Tech Paper 1983. No. 830167.
[8]
Howarth, DS; Micheli, AL. A simple titania thick film exhaust gas oxygen sensor. SAE Tech Paper 1984. No. 840140.
[9]
Takami, A; Matsuura, T; Miyata, S; Furusaki, K; Watanabe, Y. Effect of precious metal catalyst on TiO2 thick film HEGO sensor with multi-layer alumina substrate. SAE Tech Paper 1987. No. 870290.
[10]
Takami, A. Development of titania heated exhaust-gas oxygen sensor. Ceram. Bull 1988, 67, 1956–1960.
[11]
Takeuchi, T. Oxygen sensors. Sens. Actuat. B Chem 1988, 14, 109–124, doi:10.1016/0250-6874(88)80058-1.
[12]
Radecka, M; Zakrzewska, K; Rekas, M. SnO2-TiO2 solid solutions for gas sensors. Sens. Actuat. B Chem 1998, 47, 194–204, doi:10.1016/S0925-4005(98)00023-9.
[13]
Haghighat, F; Khodadadi, A; Mortazavi, Y. Temperature-independent ceria- and Pt-doped nano-size TiO2 oxygen lambda sensor using Pt/SiO2 catalytic filter. Sens. Actuat. B Chem 2008, 129, 47–52, doi:10.1016/j.snb.2007.07.068.
[14]
Francioso, L; Presicce, DS; Siciliano, P; Ficarella, A. Combustion conditions discrimination properties of Pt-doped TiO2 thin film oxygen sensor. Sens. Actuat. B Chem 2007, 123, 516–521, doi:10.1016/j.snb.2006.09.037.
[15]
Zhang, M; Yuan, Z; Song, J; Zheng, C. Improvement and mechanism for the fast response of a Pt/TiO2 gas sensor. Sens. Actuat. B Chem 2010, 148, 87–92, doi:10.1016/j.snb.2010.05.001.
[16]
Trimboli, J; Dutta, PK. Oxidation chemistry and electrical activity of Pt on titania: Development of a novel zeolite-filter hydrocarbon sensor. Sens. Actuat. B Chem 2004, 102, 132–141, doi:10.1016/j.snb.2004.03.006.
[17]
Akedo, J. Aerosol deposition of ceramic thick films at room temperature: Densification mechanism of ceramic layers. J. Am. Ceram. Soc 2006, 89, 1834–1839, doi:10.1111/j.1551-2916.2006.01030.x.
[18]
Sahner, K; Kaspar, M; Moos, R. Assessment of the aerosol deposition method for preparing metal oxide gas sensors at room temperature. Sens. Actuat. B Chem 2009, 139, 394–399, doi:10.1016/j.snb.2009.03.011.
[19]
Francioso, L; Presicce, DS; Epifani, M; Siciliano, P; Ficarella, A. Response evaluation of TiO2 sensor to flue gas on spark ignition engine and in controlled environment. Sens. Actuat. B Chem 2005, 107, 563–571, doi:10.1016/j.snb.2004.11.017.
[20]
Presicce, DS; Francioso, L; Epifani, M; Siciliano, P; Ficarella, A. Temperature and doping effects on performance of titania thin film lambda probe. Sens Actuat B Chem 2005, 111–112, 52–57.
[21]
Sch?nauer, U. Thick-film oxygen gas sensors based on ceramic semiconductors. Technisches Messen 1989, 56, 260–263.
[22]
H?fele, E; Sch?nauer, U; Seeger, W. Sensorsysteme für Low-Emission-Fahrzeuge mit Katalysator-überwachung (in German). Automobiltechnische Zeitschrift 1993, 95, 139–143.
[23]
Sch?nauer, U. Response times of resistive thick-film oxygen sensors. Sens. Actuat. B Chem 1991, 4, 431–436, doi:10.1016/0925-4005(91)80147-C.
[24]
Tragut, C; H?rdtl, KH. Kinetic behavior of resistive oxygen sensors. Sens. Actuat. B Chem 1991, 4, 425–429, doi:10.1016/0925-4005(91)80146-B.
[25]
Izu, N; Shin, W; Matsubara, I; Murayama, N. Evaluation of response characteristics of resistive oxygen sensors based on porous cerium oxide thick film using pressure modulation method. Sens. Actuat. B Chem 2006, 113, 207–213, doi:10.1016/j.snb.2005.02.049.
[26]
Müller, A; H?rdtl, KH. Ambipolar diffusion phenomena in BaTiO3 and SrTiO3. Appl. Phys. A 1989, 49, 75–82, doi:10.1007/BF00615468.
[27]
Gerblinger, J; Meixner, H. Method for Manufacturing a Fast Oxygen Sensor. European Patent 0,498,916 1991.
[28]
Gerblinger, J; Meixner, H. Electrical conductivity of sputtered films of strontium titanate. J. Appl. Phys 1990, 67, 7453–7459, doi:10.1063/1.344535.
[29]
Meixner, H; Gerblinger, J; Lampe, U; Fleischer, M. Thin-film gas sensors based on semiconducting metal oxides. Sens. Actuat. B Chem 1995, 23, 119–125, doi:10.1016/0925-4005(94)01266-K.
[30]
Gerblinger, J. Sauerstoffsensoren auf der Basis gesputterter Strontiumtitanat-Schichten (in German). Ph.D. Thesis, University of Karlsruhe, Karlsruhe, Germany, 1991.
[31]
Gerblinger, J; Hauser, M; Meixner, H. Electric and kinetic properties of screen-printed strontium titanate films at high temperatures. J. Am. Ceram. Soc 1995, 78, 1451–1456, doi:10.1111/j.1151-2916.1995.tb08836.x.
[32]
Moos, R; H?rdtl, KH. Defect chemistry of donor doped and undoped strontium titanate ceramics between 1,000 °C and 1,400 °C. J. Am. Ceram. Soc 1997, 80, 2549–2562.
[33]
Smyth, DM. Barium titanate. In The Defect Chemistry of Metal Oxides; Oxford University Press: New York, NY, USA, 2000; pp. 253–282.
[34]
Tuller, HL. Highly conductive ceramics. In Ceramic Materials for Electronics, 2nd ed; Buchanan, RC, Ed.; Marcel Dekker: New York, NY, USA, 1991; pp. 379–430.
[35]
Menesklou, W; Schreiner, H; H?rdtl, KH; Ivers-Tiffée, E. High temperature oxygen sensors based on doped SrTiO3. Sens. Actuat. B Chem 1999, 59, 184–189, doi:10.1016/S0925-4005(99)00218-X.
[36]
Meyer, R; Waser, R. Resistive donor-doped SrTiO3 sensors: I, basic model for a fast sensor response. Sens. Actuat. B Chem 2004, 101, 335–345, doi:10.1016/j.snb.2004.04.004.
[37]
Ivers-Tiffée, E; H?rdtl, KH; Menesklou, W; Riegel, J. Principles of solid state oxygen sensors for lean combustion gas control. Electrochimica Acta 2001, 47, 807–814, doi:10.1016/S0013-4686(01)00761-7.
[38]
Williams, DE; Tofield, BC; McGeehin, P. Oxygen Sensors. European Patent 0,062,994 1982.
[39]
Moseley, P; Williams, DE. Gas sensors based on oxides of early transition metals. Polyhedron 1989, 8, 1615–1618, doi:10.1016/S0277-5387(00)80606-3.
[40]
Blase, R; H?rdtl, KH; Sch?nauer, U. Oxygen Sensor Based on Non-Doped Cuprate. US Patent 5,792,666 1997.
[41]
Blase, R. . Ph.D. Thesis,; University of Karlsruhe: Karlsruhe, Germany, 1994.
[42]
Blase, R; H?rdtl, KH. VDI-Verlag: Düsseldorf, Germany, 1996; pp. 137–142.
Moos, R; Menesklou, W; Schreiner, HJ; H?rdtl, KH. Materials for temperature independent resistive oxygen sensors for combustion exhaust gas control. Sens. Actuat. B Chem 2000, 67, 178–183, doi:10.1016/S0925-4005(00)00421-4.
[45]
Moos, R; Rettig, F; Hürland, A; Plog, C. Temperature-independent resistive oxygen exhaust gas sensors for lean-burn engines in thick-film technology. Sens. Actuat. B Chem 2003, 93, 43–50, doi:10.1016/S0925-4005(03)00333-2.
[46]
Schreiner, H-J; Menesklou, W; H?rdtl, KH. Haftfeste Dickschicht-Sauerstoffsensoren für Magermotoren (in German). German Patent DE 19,927,725 1999.
[47]
Rothschild, A; Litzelman, SJ; Tuller, HL; Menesklou, W; Schneider, T; Ivers-Tiffée, E. Temperature-independent resistive oxygen sensors based on SrFe1-xTixO3-δ solid solutions. Sens. Actuat. B Chem 2005, 108, 223–230, doi:10.1016/j.snb.2004.09.044.
[48]
Rothschild, A; Menesklou, W; Tuller, HL; Ivers-Tiffée, E. Electronic structure, defect chemistry, and transport properties of SrTi1-xFexO3-y solid solutions. Chem. Mater 2006, 18, 3651–3659, doi:10.1021/cm052803x.
[49]
Zhou, HD; Goodenough, JB. Polaron morphologies in SrFe1-xTixO3-δ. J. Solid State Chem 2004, 177, 1952–1957, doi:10.1016/j.jssc.2004.01.015.
[50]
Wan, L. Poisoning of perovskite oxides by sulfur dioxide. In Properties and Applications of Perovskite-Type Oxides; Tejuca, LG, Fierro, JLG, Eds.; Marcel Dekker: New York, NY, USA, 1993; p. 145.
[51]
Schulte, T; Waser, R; R?mer, EWJ; Bouwmeester, HJM; Nigge, U; Wiemh?fer, H-D. Development of oxygen-permeable membranes for NOx-sensors. J. Eur. Ceram. Soc 2001, 21, 1971–1975, doi:10.1016/S0955-2219(01)00153-4.
[52]
Rettig, F; Moos, R; Plog, C. Poisoning of temperature independent resistive oxygen sensors by sulfur dioxide. J. Electroceram 2004, 13, 733–738, doi:10.1007/s10832-004-5184-x.
[53]
Gerblinger, J; Lampe, U; Meixner, H. Gas Sensor. European Patent EP 0,656,538 1993.
[54]
Meixner, H; Kornely, S; Hahn, D; Leiderer, H; Lemire, B; Hacker, B. Gas Sensor. U.S. Patent 6,101,865 1995.
[55]
Rettig, F; Moos, R; Plog, C. Sulfur adsorber for thick-film exhaust gas sensors. Sens. Actuat. B Chem 2003, 93, 36–42, doi:10.1016/S0925-4005(03)00334-4.
[56]
Sanson, A; Mercadelli, E; Roncari, E; Licheri, R; Orrù, R; Cao, G; Merlone-Borla, E; Marzorati, D; Bonavita, A; Micali, G; Neri, G. Influence of processing parameters on the electrical response of screen printed SrFe0.6Ti0.4O3-δ thick films. Ceram. Int 2010, 36, 521–527, doi:10.1016/j.ceramint.2009.09.028.
[57]
Neri, G; Bonavita, A; Micali, G; Rizzo, G; Licheri, R; Orrù, R; Cao, G. Resistive λ-sensors based on ball milled Fe-doped SrTiO3 nanopowders obtained by self-propagating high-temperature synthesis (SHS). Sens. Actuat. B Chem 2007, 126, 258–265, doi:10.1016/j.snb.2006.12.008.
[58]
Neri, G; Micali, G; Bonavita, A; Licheri, R; Orrù, R; Cao, G; Marzorati, D; Merlone Borla, E; Roncari, E; Sanson, A. FeSrTiO3-based resistive oxygen sensors for application in diesel engines. Sens. Actuat. B Chem 2008, 134, 647–653, doi:10.1016/j.snb.2008.06.007.
[59]
Moos, R; Rettig, F. Resistiver Sauerstoffsensor (in German). German Patent DE 10114645 C1, 2003.
[60]
Sahner, K; Straub, J; Moos, R. Cuprate-ferrate compositions for temperature independent resistive oxygen sensors. J. Electroceram 2006, 16, 179–186, doi:10.1007/s10832-006-6203-x.
[61]
McLachlan, DS. An equation for the conductivity of binary mixtures with anisotropic grain structures. J. Phys. C Solid State Phys 1987, 20, 865–877, doi:10.1088/0022-3719/20/7/004.
[62]
Fleischer, M; Meixner, H. Gallium oxide thin films: A new material for high-temperature oxygen sensors. Sens. Actuat. B Chem 1991, 4, 437–441, doi:10.1016/0925-4005(91)80148-D.
[63]
Fleischer, M; Meixner, H. Oxygen sensing with long-term stable Ga2O3 thin films. Sens. Actuat. B Chem 1991, 5, 115–119, doi:10.1016/0925-4005(91)80230-H.
[64]
Lampe, U; Fleischer, M; Meixner, H. Lambda measurement with Ga2O3. Sens. Actuat. B Chem 1994, 17, 187–196, doi:10.1016/0925-4005(93)00880-8.
[65]
Fleischer, M; H?llbauer, L; Born, E; Meixner, H. Evidence for a phase transition of β-Gallium oxide at very low oxygen pressures. J. Am. Ceram. Soc 1997, 80, 2121–2125.
[66]
Schwebel, T; Fleischer, M; Meixner, H. A selective, temperature compensated O2 sensor based on Ga2O3 thin films. Sens. Actuat. B Chem 2000, 65, 176–180, doi:10.1016/S0925-4005(99)00326-3.
[67]
Ogita, M; Higo, K; Nakanishi, Y; Hatanaka, Y. Ga2O3 thin film for oxygen sensor at high temperature. Appl Surf Sci 2001, 175–176, 721–725.
[68]
Li, Y; Trinchi, A; Wlodarski, W; Galatsis, K; Kalantar-zadeh, K. Investigation of the oxygen gas sensing performance of Ga2O3 thin films with different dopants, Sens. Actuat. B Chem 2003, 93, 431–434, doi:10.1016/S0925-4005(03)00171-0.
[69]
Bartic, M; Ogita, M; Isai, M; Baban, C-L; Suzuki, H. Oxygen sensing properties at high temperatures of β-Ga2O3 thin films deposited by the chemical solution deposition method. J. Appl. Phys 2007, 102, 023709, doi:10.1063/1.2756085.
[70]
Hoefer, U; Frank, J; Fleischer, M. High temperature Ga2O3-gas sensors and SnO2-gas sensors: A comparison. Sens. Actuat. B Chem 2001, 78, 6–11, doi:10.1016/S0925-4005(01)00784-5.
[71]
Yao, HC; Yu Yao, YF. Ceria in automotive exhaust catalysts. J. Catal 1984, 86, 254–265, doi:10.1016/0021-9517(84)90371-3.
[72]
Ka?par, J; Fornasiero, P; Graziani, M. Use of CeO2-based oxides in the three-way catalysis. Catal. Today 1999, 50, 285–298, doi:10.1016/S0920-5861(98)00510-0.
[73]
Tuller, HL; Nowick, AS. Defect structure and electrical properties of nonstoichiometric CeO2 single crystals. J. Electrochem. Soc 1979, 126, 209–217, doi:10.1149/1.2129007.
[74]
Kim, S; Maier, J. On the conductivity mechanism of nanocrystalline ceria. J. Electrochem. Soc 2002, 149, J73–J83, doi:10.1149/1.1507597.
[75]
Suda, A; Ukyo, Y; Yamamura, K; Sobukawa, H; Sasaki, T; Nagai, Y; Tanabe, T; Sugiura, M. Effect of ordered arrangement of Ce and Zr ions on oxygen storage capacity of ceria-zirconia solid solutions. J. Ceram. Soc. Jpn 2004, 112, 586–589, doi:10.2109/jcersj.112.586.
[76]
Nakatani, T; Wakita, T; Wakasugi, T; Ota, R. Oxygen store and release of CeO2-ZrO2-MO1.5 (M = La, Nd) powders prepared by co-precipitation method. J. Ceram. Soc. Jpn 2004, 112, 445–451, doi:10.2109/jcersj.112.445.
[77]
Stefanik, TS; Tuller, HL. Ceria-based gas sensors. J. Eur. Ceram. Soc 2001, 21, 1967–1970, doi:10.1016/S0955-2219(01)00152-2.
[78]
Kosacki, I; Suzuki, T; Petrovsky, V; Anderson, HU. Electrical conductivity of nanocrystalline ceria and zirconia thin films. Solid State Ionics 2000, 136–137, 1225–1233.
[79]
Tsch?pe, A. Grain size-dependent electrical conductivity of polycrystalline cerium oxide II: Space charge model. Solid State Ionics 2001, 139, 267–280, doi:10.1016/S0167-2738(01)00677-4.
[80]
Beie, H-J; Gn?rich, A. Oxygen gas sensors based on CeO2 thick and thin films. Sens. Actuat. B Chem 1991, 4, 393–399, doi:10.1016/0925-4005(91)80141-6.
Murayama, N; Izu, N; Shin, W; Matsubara, I. Preparation of SnO2 nanosized powder by precipitation method with nano-mixing of carbon powder. J. Ceram. Soc. Jpn 2005, 113, 330–332, doi:10.2109/jcersj.113.330.
[83]
Izu, N; Shin, W; Matsubara, I; Murayama, N. Resistive oxygen gas sensors using ceria-zirconia thick films. J. Ceram. Soc. Jpn 2004, 112, s535–s539.
[84]
Izu, N; Oh-hori, N; Shin, W; Matsubara, I; Murayama, N; Itou, M. Response of resistive oxygen sensors using Ce1-xZrxO2 (x = 0.05, 0.10) thick films in propane combustion gas. Sens. Actuat. B Chem 2008, 130, 105–109, doi:10.1016/j.snb.2007.07.093.
[85]
Izu, N; Shin, W; Matsubara, I; Itoh, T; Nishibori, M; Murayama, N. Pt catalytic effects on a resistive oxygen sensor using Ce0.9Zr0.1O2 thick film in rich conditions. J. Ceram. Soc. Jpn 2010, 118, 175–179, doi:10.2109/jcersj2.118.175.
[86]
Izu, N; Oh-hori, N; Itou, M; Shin, W; Matsubara, I; Murayama, N. Resistive oxygen gas sensors based on Ce1-xZrxO2 nano powder prepared using new precipitation method. Sens. Actuat. B Chem 2005, 108, 238–243, doi:10.1016/j.snb.2004.11.064.
[87]
Manorama, SV; Izu, N; Shin, W; Matsubara, I; Murayama, N. On the platinum sensitization of nanosized cerium dioxide sensors. Sens. Actuat. B Chem 2003, 89, 299–304, doi:10.1016/S0925-4005(03)00005-4.
[88]
Izu, N; Shin, W; Matsubara, I; Murayama, N. Development of resistive oxygen sensors based on cerium oxide thick film. J. Electroceram 2004, 13, 703–706, doi:10.1007/s10832-004-5179-7.
[89]
Alkemade, UG; Schumann, B. Engines and exhaust after treatment systems for future automotive applications. Solid State Ionics 2006, 177, 2291–2296, doi:10.1016/j.ssi.2006.05.051.
[90]
Moos, R. Catalysts as sensors—A promising novel approach in automotive exhaust gas aftertreatment. Sensors 2010, 10, 6773–6787, doi:10.3390/s100706773. 22163575
[91]
Rei?, S; Wedemann, M; Moos, R; R?sch, M. Electrical in situ characterization of three-way catalyst coatings. Top. Catal 2009, 52, 1898–1902, doi:10.1007/s11244-009-9366-2.
[92]
Rei?, S; Sp?rl, M; Hagen, G; Fischerauer, G; Moos, R. Combination of wirebound and microwave measurements for in situ characterization of automotive three-way catalysts. IEEE Sens. J 2009, 11, 434–438.
[93]
Li, H; Zhu, Q; Li, Y; Gong, M; Chen, Y; Wang, J; Chen, Y. Effects of ceria/zirconia ratio on properties of mixed CeO2-ZrO2-Al2O3 compound. J. Rare Earths 2010, 28, 79–83.
[94]
Han, Z; Wang, J; Yan, H; Shen, M; Wang, J; Wang, W; Yang, M. Performance of dynamic oxygen storage capacity, water-gas shift and steam reforming reactions over Pd-only three-way catalysts. Catal. Today 2010, 158, 481–489, doi:10.1016/j.cattod.2010.07.020.
[95]
Fischerauer, G; Sp?rl, M; Gollwitzer, A; Wedemann, M; Moos, R. Catalyst state observation via the perturbation of a microwave cavity resonator. Frequenz 2008, 62, 180–184.
[96]
Moos, R; Wedemann, M; Sp?rl, M; Rei?, S; Fischerauer, G. Direct catalyst monitoring by electrical means: An overview on promising novel principles. Top. Catal 2009, 52, 2035–2040, doi:10.1007/s11244-009-9399-6.
[97]
Esper, MJ; Logothetis, EM; Chu, JC. Titania exhaust gas sensor for automotive applications. SAE Tech Paper 1979. No. 790140.
[98]
Fleischer, M; Hanrieder, W; Meixner, H. Oxygen sensor with semiconducting gallium oxide. European Patent EP 0464243 1995.
[99]
Sugie, J. Oxide semiconductor gas sensor. Japanese Patent H06-222,026 1994.
[100]
Frank, J; Fleischer, M; Meixner, H. Gas sensor. World Patent WO 9,608,712 1996.
[101]
Izu, N; Shin, W; Matsubara, I; Murayama, N. Small temperature-dependent resistive oxygen gas sensors using Ce0.9Y0.1O2?δ as a new temperature compensating material. Sens. Actuat. B Chem 2004, 101, 381–386, doi:10.1016/j.snb.2004.04.011.
[102]
Izu, N; Shin, W; Matsubara, I; Murayama, N; Oh-hori, N; Itou, M. Temperature independent resistive oxygen sensors using solid electrolyte zirconia as a new temperature compensating material. Sens. Actuat. B Chem 2005, 108, 216–222, doi:10.1016/j.snb.2004.11.034.
[103]
Izu, N; Nishizaki, S; Itoh, T; Shin, W; Matsubara, I; Murayama, N. Output evaluation of resistive oxygen sensor having Ce0.9Zr0.1O2 sensing material and Zr0.8Y0.2O2-δ temperature compensating material in model exhaust gas. J. Ceram. Soc. Jpn 2007, 115, 688–691, doi:10.2109/jcersj2.115.688.
[104]
Izu, N; Nishizaki, S; Shin, W; Itoh, T; Nishibori, M; Matsubara, I. Resistive oxygen sensor using ceria-zirconia sensor material and ceria-yttria temperature compensating material for lean-burn engine. Sensors 2009, 9, 8884–8895, doi:10.3390/s91108884. 22291542
[105]
Merkle, R; Maier, J. How is oxygen incorporated into oxides? A comprehensive kinetic study of a simple solid-state reaction with SrTiO3 as a model material. Angew. Chem. Int. Ed 2008, 47, 3874–3894, doi:10.1002/anie.200700987.
[106]
Tragut, C. The influence of the surface transfer reaction on the response characteristics of resistive oxygen sensors. Sens. Actuat. B Chem 1992, 7, 742–746, doi:10.1016/0925-4005(92)80396-F.
[107]
Dubbe, A; Wiemh?fer, HD; G?pel, W. Frequency response study of the kinetic behaviour of nernstian solid-electrolyte gas sensors by pressure modulation. J. Electroanal. Chem 1994, 371, 43–51, doi:10.1016/0022-0728(93)03243-I.
[108]
Shin, W; Izu, N; Matsubara, I; Murayama, N. Millisecond-order response measurement for fast oxygen gas sensors. Sens. Actuat. B Chem 2004, 100, 395–400, doi:10.1016/j.snb.2004.02.007.
[109]
Izu, N; Shin, W; Matsubara, I; Murayama, N. Kinetic behavior of resistive oxygen sensor using cerium oxide. Sens. Actuat. B Chem 2004, 100, 419–424.
[110]
Izu, N; Itoh, T; Shin, W; Matsubara, I; Murayama, N. Evaluation of response characteristics of resistive oxygen sensors using Ce0.9Zr0.1O2 thick film by pressure modulation method. Sens. Actuat. B Chem 2008, 130, 466–469, doi:10.1016/j.snb.2007.09.016.
[111]
Wagner, SF; Menesklou, W; Schneider, T; Ivers-Tiffée, E. Kinetics of oxygen incorporation into SrTiO3 investigated by frequency-domain analysis. J. Electroceram 2004, 13, 645–651, doi:10.1007/s10832-004-5171-2.
[112]
Sahner, K; Moos, R; Izu, N; Shin, W; Murayama, N. Response kinetics of temperature independent resistive oxygen sensor formulations: A comparative study. Sens. Actuat. B Chem 2006, 113, 112–119, doi:10.1016/j.snb.2005.02.035.
[113]
Argirusis, C; Jomard, F; Wagner, SF; Menesklou, W; Ivers-Tiffée, E. Study of the oxygen incorporation and diffusion in Sr(Ti0.65Fe0.35)O3 ceramics. Solid State Ionics 2011. in press,, doi:10.1016/j.ssi.2010.02.016..
[114]
Zheng, H; S?rensen, OT. Integrated oxygen sensors based on Mg-doped SrTiO3 fabricated by screen-printing. Sens. Actuat. B Chem 2000, 65, 299–301, doi:10.1016/S0925-4005(99)00340-8.
[115]
Jonker, GH. Application of combined conductivity and seebeck-effect plots for analysis of semiconductor properties. Philips Res. Rep 1968, 23, 131–138.
[116]
Rettig, F; Sahner, K; Moos, R. Thermopower of LaFe1?xCuxO3?δ. Solid State Ionics 2005, 15, 569.
[117]
Rettig, F; Moos, R. α-iron oxide: An intrinsically semiconducting oxide material for direct thermoelectric oxygen sensors. Sens. Actuat. B Chem 2010, 145, 685–690, doi:10.1016/j.snb.2010.01.023.
[118]
Rettig, F; Moos, R. Direct thermoelectric gas sensors: Design aspects and first gas sensors. Sens. Actuat. B Chem 2007, 123, 413–419, doi:10.1016/j.snb.2006.09.002.
[119]
Choi, GM; Tuller, HL. Defect structure and electrical properties of single-crystal Ba0.03Sr0.97TiO3. J. Am. Ceram. Soc 1988, 71, 201–205, doi:10.1111/j.1151-2916.1988.tb05848.x.
[120]
Rettig, F; Moos, R. Morphology dependence of thermopower and resistance in semiconducting oxides with space charge regions. Solid State Ionics 2008, 179, 2299–2307, doi:10.1016/j.ssi.2008.08.006.
[121]
Rettig, F; Moos, R. Direct thermoelectric hydrocarbon gas sensors based on SnO2. IEEE Sens. J 2007, 7, 1490–1496, doi:10.1109/JSEN.2007.906887.
[122]
Rettig, F; Moos, R. Thermoelectric gas sensors: Proof of reproducibility and geometry independency. Proceedings of The 11th International Meeting on Chemical Sensors (IMCS 11), Brescia, Italy, 16–19 July 2006.
[123]
R?der-Roith, U; Rettig, F; R?der, T; Janek, J; Moos, R; Sahner, K. Thick-film solid electrolyte oxygen sensors using the direct ionic thermoelectric effect. Sens. Actuat. B Chem 2009, 136, 530–535, doi:10.1016/j.snb.2008.12.024.
[124]
Rettig, F; Moos, R. Temperature modulated direct thermoelectric gas sensors: Thermal modeling and results for fast hydrocarbon sensors. Meas. Sci. Technol 2009, 20, 065205, doi:10.1088/0957-0233/20/6/065205.