全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2010 

“Smart” Continuous Glucose Monitoring Sensors: On-Line Signal Processing Issues

DOI: 10.3390/s100706751

Keywords: diabetes, prediction, filtering, calibration, model, time-series

Full-Text   Cite this paper   Add to My Lib

Abstract:

The availability of continuous glucose monitoring (CGM) sensors allows development of new strategies for the treatment of diabetes. In particular, from an on-line perspective, CGM sensors can become “smart” by providing them with algorithms able to generate alerts when glucose concentration is predicted to exceed the normal range thresholds. To do so, at least four important aspects have to be considered and dealt with on-line. First, the CGM data must be accurately calibrated. Then, CGM data need to be filtered in order to enhance their signal-to-noise ratio (SNR). Thirdly, predictions of future glucose concentration should be generated with suitable modeling methodologies. Finally, generation of alerts should be done by minimizing the risk of detecting false and missing true events. For these four challenges, several techniques, with various degrees of sophistication, have been proposed in the literature and are critically reviewed in this paper.

References

[1]  O'Meara, NM; Sturis, J; Van Cauter, E; Polonsky, KS. Lack of control by glucose of ultradian insulin secretory oscillations in impaired glucose tolerance and in non-insulin-dependent diabetes mellitus. J. Clin. Invest?1993, 92, 262–271, doi:10.1172/JCI116560. 8325993
[2]  Simon, C; Brandenberger, G; Follenius, M. Ultradian oscillations of plasma glucose, insulin, and C-peptide in man during continuous enteral nutrition. J. Clin. Endocrinol Metab?1987, 64, 669–674, doi:10.1210/jcem-64-4-669. 3102544
[3]  Hollingdal, M; Juhl, CB; Pincus, SM; Sturis, J; Veldhuis, JD; Polonsky, KS; P?rksen, N; Schmitz, O. Failure of physiological plasma glucose excursions to entrain high-frequency pulsatile insulin secretion in type 2 diabetes. Diabetes?2000, 49, 1334–1340, doi:10.2337/diabetes.49.8.1334. 10923634
[4]  Magni, P; Bellazzi, R. A stochastic model to assess the variability of blood glucose time series in diabetic patients self-monitoring. IEEE Trans. Biomed. Eng?2006, 53, 977–985, doi:10.1109/TBME.2006.873388. 16761824
[5]  Deutsch, T; Lehmann, ED; Carson, ER; Roudsari, AV; Hopkins, KD; S?nksen, PH. Time series analysis and control of blood glucose levels in diabetic patients. Comput. Methods Programs Biomed?1994, 41, 167–182, doi:10.1016/0169-2607(94)90053-1. 8187464
[6]  Lehmann, ED. Application of computers in clinical diabetes care. Diab. Nutr. Metab?1997, 10, 45–59.
[7]  Kovatchev, BP; Otto, E; Cox, D; Gonder-Frederick, L; Clarke, W. Evaluation of a new measure of blood glucose variability in diabetes. Diabetes Care?2006, 29, 2433–2438, doi:10.2337/dc06-1085. 17065680
[8]  Klonoff, DC. Continuous glucose monitoring: roadmap for 21st century diabetes therapy. Diabetes Care?2005, 28, 1231–1239, doi:10.2337/diacare.28.5.1231. 15855600
[9]  Skyler, JS. Continuous glucose monitoring: an overview of its development. Diabetes Technol. Ther?2009, 11, S5–S10. 19772449
[10]  Buckingham, B. Clinical overview of continuous glucose monitoring. J. Diabetes Sci. Technol?2008, 2, 300–306, doi:10.1177/193229680800200223. 19885360
[11]  Deiss, D; Bolinder, J; Riveline, J; Battelino, T; Bosi, E; Tubiana-Rufi, N; Kerr, D; PHillip, M. Improved glycemic control in poorly controlled patients with type 1 diabetes using real-time continuous glucose monitoring. Diabetes Care?2006, 29, 2730–2732, doi:10.2337/dc06-1134. 17130215
[12]  Garg, K; Zisser, H; Schwartz, S; Bailey, T; Kaplan, R; Ellis, S; Jovanovic, L. Improvement in glycemic excursions with a transcutaneous, real-time continuous glucose sensor. Diabetes Care?2006, 29, 44–50, doi:10.2337/diacare.29.01.06.dc05-1686. 16373894
[13]  The Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. Continuous glucose monitoring and intensive treatment of type 1 diabetes. N. Engl. J. Med?2008, 359, 1464–1476, doi:10.1056/NEJMoa0805017. 18779236
[14]  De Block, C; Vertommen, J; Manuel-y-Keenoy, B; Van Gaal, L. Minimally-invasive and non-invasive continuous glucose monitoring systems: indications, advantages, limitations and clinical aspects. Curr. Diabetes Rev?2008, 4, 159–168, doi:10.2174/157339908785294415. 18690896
[15]  Nichols, JH; Klonoff, DC. The need for performance standards for continuous glucose monitors. J. Diabetes Sci. Technol?2007, 1, 92–95, doi:10.1177/193229680700100114. 19888385
[16]  Rahaghi, FN; Gough, DA. Blood glucose dynamics. Diabetes Technol. Ther?2008, 10, 81–94, doi:10.1089/dia.2007.0256. 18260771
[17]  Clarke, W; Kovatchev, B. Statistical tools to analyze continuous glucose monitor data. Diabetes Technol. Ther?2009, 11, S45–S54, doi:10.1089/dia.2007.0299. 19772448
[18]  Hovorka, R. The future of continuous glucose monitoring: closed loop. Curr. Diabetes Rev?2008, 4, 269–279, doi:10.2174/157339908785294479. 18690909
[19]  Cobelli, C; Dalla Man, C; Sparacino, G; Magni, L; De Nicolao, G; Kovatchev, BP. Diabetes: Models, Signals, and Control. IEEE Rev. Biomed. Eng?2009, 2, 54–96, doi:10.1109/RBME.2009.2036073. 20936056
[20]  Buckingham, B. Hypoglycemia detection, and better yet, prevention, in pediatric patients. Diabetes Technol. Ther?2005, 7, 792–796, doi:10.1089/dia.2005.7.792. 16241885
[21]  Bequette, BW. Continuous Glucose Monitoring: Real-Time Algorithms for Calibration, Filtering, and Alarms. J. Diabetes Sci. Technol?2010, 4, 404–418, doi:10.1177/193229681000400222. 20307402
[22]  Mastrototaro, JJ; Gross, TM; Shin, JJ. Glucose monitor calibration methods. US Patent 6,424,847?2002.
[23]  Poscia, A; Mascini, M; Moscone, D; Luzzana, M; Caramenti, G; Cremonesi, P; Valgimigli, F; Bongiovanni, C; Varalli, M. A microdialysis technique for continuous subcutaneous glucose monitoring in diabetic patients (part 1). Biosens. Bioelectron?2003, 18, 891–898, doi:10.1016/S0956-5663(02)00216-6. 12713912
[24]  Feldman, BJ; McGarraugh, GV. Method of calibrating an analyte measurement device, and associated methods, devices and systems. US Patent 7,299,082?2007.
[25]  Simpson, P; Brister, M; Wightlin, M; Pryor, J. Dual electrode system for a continuous analyte sensor. Publication Number WO/2008/042918, April, 10, 2008.
[26]  Lodwig, V; Heinemann, L; Glucose Monitoring Study Group. Continuous glucose monitoring with glucose sensors: calibration and assessment criteria. Diabetes Technol. Ther?2003, 5, 572–586, doi:10.1089/152091503322250596. 14511412
[27]  Panteleon, AE; Rebrin, K; Steil, GM. The role of the independent variable to glucose sensor calibration. Diabetes Technol. Ther?2003, 5, 401–410, doi:10.1089/152091503765691901. 12828824
[28]  Choleau, C; Dokladal, P; Klein, JC; Ward, WK; Wilson, GS; Reach, G. Prevention of hypoglycemia using risk assessment with a continuous glucose monitoring system. Diabetes?2002, 51, 3263–3273, doi:10.2337/diabetes.51.11.3263. 12401718
[29]  Rebrin, K; Steil, GM; Van Antwerp, WP. Subcutaneous glucose predicts plasma glucose independent of insulin: implications for continuous monitoring. Am. J. Physiol?1999, 277, E561–E571. 10484370
[30]  Kovatchev, B; Gonder-Frederick, LA; Cox, DJ; Clarke, WL. Evaluating the accuracy of continuous glucose monitoring sensors: continuous glucose-error grid analysis illustrated by the TheraSense Freestyle Navigator data. Diabetes Care?2004, 27, 1922–1928, doi:10.2337/diacare.27.8.1922. 15277418
[31]  Diabetes Research In Children Network (Direcnet) Study Group; Buckingham, BA; Kollman, C; Beck, R; Kalajian, A; Fiallo-Scharer, R; Tansey, MJ; Fox, LA; Wilson, DM; Weinzimer, SA; Ruedy, KJ; Tamborlane, WV. Evaluation of factors affecting CGMS calibration. Diabetes Technol. Ther?2006, 8, 318–325, doi:10.1089/dia.2006.8.318. 16800753
[32]  King, C; Anderson, SM; Breton, M; Clarke, WL; Kovatchev, BP. Modeling of calibration effectiveness and blood-to-interstitial glucose dynamics as potential confounders of the accuracy of continuous glucose sensors during hyperinsulinemic clamp. J. Diabetes Sci. Technol?2007, 1, 317–322, doi:10.1177/193229680700100302. 19756217
[33]  Kuure-Kinsey, M; Palerm, CC; Bequette, BW. A dual-rate Kalman filter for continuous glucose monitoring. Proceedings of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, August 2006; pp. 63–66.
[34]  Knobbe, EJ; Buckingham, B. The extended Kalman filter for continuous glucose monitoring. Diabetes Technol. Ther?2005, 7, 15–27, doi:10.1089/dia.2005.7.15. 15738701
[35]  Facchinetti, A; Sparacino, G; Cobelli, C. Enhanced accuracy of continuous glucose monitoring by online extended Kalman filtering. Diabetes Technol. Ther?2010, 12, 353–363, doi:10.1089/dia.2009.0158. 20388045
[36]  Facchinetti, A; Sparacino, G; Cobelli, C. Modeling the error of continuous glucose monitoring sensor data: critical aspects discussed through simulation studies. J. Diabetes Sci. Technol?2010, 4, 4–14, doi:10.1177/193229681000400102. 20167162
[37]  Dalla Man, C; Rizza, RA; Cobelli, C. Meal simulation model of the glucose-insulin system. IEEE Trans. Biomed. Eng?2007, 54, 1740–1749, doi:10.1109/TBME.2007.893506. 17926672
[38]  Guerra, S; Facchinetti, A; Sparacino, G; De Nicolao, G; Cobelli, C. Comparison of four methods for on-line calibration of CGM data. Proceedings of the 9th Diabetes Technology Meeting (DTM), San Francisco, CA, USA, November 2009; p. A51.
[39]  Facchinetti, A; Guerra, S; Sparacino, G; De Nicolao, G; Cobelli, C. Method to Recalibrate Continuous Glucose Monitoring Data On-Line. US Provisional Patent Application No. 61/257,288. filed on, November, 2, 2009.
[40]  Anderson, BD; Moore, JB. Optimal Filtering; Dover Publications Inc: Mineola, NY, USA, 2005.
[41]  Chase, JG; Hann, CE; Jackson, M; Lin, J; Lotz, T; Wong, XW; Shaw, GM. Integral-based filtering of continuous glucose sensor measurements for glycaemic control in critical care. Comput. Methods Programs Biomed?2006, 82, 238–247, doi:10.1016/j.cmpb.2006.03.004. 16647157
[42]  Palerm, CC; Willis, JP; Desemone, J; Bequette, BW. Hypoglycemia prediction and detection using optimal estimation. Diabetes Technol. Ther?2005, 7, 3–14, doi:10.1089/dia.2005.7.3. 15738700
[43]  Facchinetti, A; Sparacino, G; Cobelli, C. An online self-tunable method to denoise CGM sensor data. IEEE Trans. Biomed. Eng?2010, 57, 634–641, doi:10.1109/TBME.2009.2033264. 19822467
[44]  Maran, A; Crepaldi, C; Tiengo, A; Grassi, G; Vitali, E; Pagano, G; Bistoni, S; Calabrese, G; Santeusanio, F; Leonetti, F; Ribaudo, M; Di Mario, U; Annuzzi, G; Genovese, S; Riccardi, G; Previti, M; Cucinotta, D; Giorgino, F; Bellomo, A; Giorgino, R; Poscia, A; Varalli, M. Continuous subcutaneous glucose monitoring in diabetic patients: a multicenter analysis. Diabetes Care?2002, 25, 347–351, doi:10.2337/diacare.25.2.347. 11815508
[45]  Sparacino, G; Facchinetti, A; Cobelli, C. University of Padova. Method and device for processing glycemia level data by means of self-adaptive filtering, predicting the future glycemia level and generating alerts. Publication Number WO/2009/136372, November, 12, 2009.
[46]  Choleau, C; Klein, JC; Reach, G; Aussedat, B; Demaria-Pesce, V; Wilson, GS; Gifford, R; Ward, WK. Calibration of a subcutaneous amperometric glucose sensor implanted for 7 days in diabetic patients. Part 2. Superiority of the one-point calibration method. Biosens. Bioelectron?2002, 17, 647–654, doi:10.1016/S0956-5663(01)00304-9. 12052350
[47]  Bremer, T; Gough, DA. Is blood glucose predictable from previous values? A solicitation for data. Diabetes?1999, 48, 445–451, doi:10.2337/diabetes.48.3.445. 10078542
[48]  Sparacino, G; Zanderigo, F; Corazza, C; Maran, A; Facchinetti, A; Cobelli, C. Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series. IEEE Trans. Biomed. Eng?2007, 54, 931–937, doi:10.1109/TBME.2006.889774. 17518291
[49]  Zanderigo, F; Sparacino, G; Kovatchev, BP; Cobelli, C. Glucose prediction algorithms from continuous monitoring data: assessment of accuracy via continuous glucose—error grid analysis. J. Diabetes Sci. Technol?2007, 1, 645–651, doi:10.1177/193229680700100508. 19718282
[50]  Eren-Oruklu, M; Cinar, A; Quinn, L; Smith, D. Estimation of future glucose concentrations with subject-specific recursive linear models. Diabetes Technol. Ther?2009, 11, 243–253, doi:10.1089/dia.2008.0065. 19344199
[51]  Reifman, J; Rajaraman, S; Gribok, A; Ward, WK. Predictive monitoring for improved management of glucose levels. J. Diabetes Sci. Technol?2007, 1, 478–486, doi:10.1177/193229680700100405. 19885110
[52]  Gani, A; Gribok, AV; Rajaraman, S; Ward, WK; Reifman, J. Predicting subcutaneous glucose concentration in humans: data-driven glucose modeling. IEEE Trans. Biomed. Eng?2009, 56, 246–254, doi:10.1109/TBME.2008.2005937. 19272928
[53]  Lu, Y; Gribok, A; Ward, K; Reifman, J. The importance of different frequency bands in predicting subcutaneous glucose concentration in type 1 diabetic patients. IEEE Trans Biomed Eng?2010. (in press).
[54]  Palerm, CC; Bequette, W. Hypoglycemia detection and prediction using continuous glucose monitoring—a study on hypoglycemic clamp data. J. Diabetes Sci. Technol?2007, 1, 624–629, doi:10.1177/193229680700100505. 19885130
[55]  Pappada, SM; Cameron, BD; Rosman, PM. Development of a neural network for prediction of glucose concentration in type I diabetes patients. J. Diabetes Sci. Technol?2008, 2, 792–801, doi:10.1177/193229680800200507. 19885262
[56]  Pérez-Gandía, C; Facchinetti, A; Sparacino, G; Cobelli, C; Gómez, EJ; Rigla, M; de Leiva, A; Hernando, ME. Artificial neural network algorithm for on-line glucose prediction from continuous glucose monitoring. Diabetes Technol. Ther?2010, 12, 81–88, doi:10.1089/dia.2009.0076. 20082589
[57]  Heise, T; Koschinsky, T; Heinemann, L; Lodwig, V; Glucose monitoring study group. Hypoglycemia warning signal and glucose sensors: requirements and concepts. Diabetes Technol. Ther?2003, 5, 563–571, doi:10.1089/152091503322250587. 14511411
[58]  Pitzer, KR; Desai, S; Dunn, T; Edelman, S; Jayalakshmi, Y; Kennedy, J; Tamada, JA; Potts, RO. Detection of hypoglycemia with the GlucoWatch biograPHer. Diabetes Care?2001, 24, 881–885, doi:10.2337/diacare.24.5.881. 11347748
[59]  Bode, B; Gross, K; Rikalo, N; Schwartz, S; Wahl, T; Page, C; Gross, T; Mastrototaro, J. Alarms based on real-time sensor glucose values alert patients to hypo- and hyperglycemia: the guardian continuous monitoring system. Diabetes Technol. Ther?2004, 6, 105–113, doi:10.1089/152091504773731285. 15117576
[60]  Klonoff, DC. The need for separate performance goals for glucose sensors in the hypoglycemic, normoglycemic, and hyperglycemic ranges. Diabetes Care?2004, 27, 834–836, doi:10.2337/diacare.27.3.834. 14988313
[61]  Ward, WK. The role of new technology in the early detection of hypoglycaemia. Diabetes Technol. Ther?2004, 6, 115–117, doi:10.1089/152091504773731294. 15117577

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133