Prognostics and health management (PHM) is an enabling discipline consisting of technologies and methods to assess the reliability of a product in its actual life cycle conditions to determine the advent of failure and mitigate system risk. Sensor systems are needed for PHM to monitor environmental, operational, and performance-related characteristics. The gathered data can be analyzed to assess product health and predict remaining life. In this paper, the considerations for sensor system selection for PHM applications, including the parameters to be measured, the performance needs, the electrical and physical attributes, reliability, and cost of the sensor system, are discussed. The state-of-the-art sensor systems for PHM and the emerging trends in technologies of sensor systems for PHM are presented.
References
[1]
Pecht, M. Prognostics and Health Management of Electronics; Wiley-Interscience: New York, NY, USA, 2008.
[2]
DoD 5000.2 Policy Document. Performance Based Logistics. In Defense Acquisition Guidebook; Defense Acquisition University: Fort Belvoir, VA, USA, 2004. Chapter 5.3..
[3]
Vichare, N.; Pecht, M. Prognostics and Health Management of Electronics. IEEE Trans. Compon. Packag. Technol?2006, 29, 222–229, doi:10.1109/TCAPT.2006.870387.
[4]
Schwabacher, M.; Goebel, K. A Survey of Artificial Intelligence for Prognostics. Proceedings of 2007 AAAI Fall Symposium: AI for Prognostics, Arlington, VA, USA, November 9–11, 2007.
[5]
Liu, J.; Djurdjanovic, D.; Marko, K.; Ni, J.A. Divide and Conquer Approach to Anomaly Detection, Localization Diagn. Mech. Syst. Signal Process?2009, 23, 2488–2499, doi:10.1016/j.ymssp.2009.05.016.
[6]
Vachtsevanos, G.; Lewis, F.; Roemer, M.; Hess, A.; Wu, B. Intelligent Fault Diagnosis and Prognosis for Engineering Systems, 1st ed ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006.
[7]
Saha, B.; Goebel, K.; Poll, S.; Christophersen, J. Prognostics Methods for Battery Health Monitoring Using a Bayesian Framework. Instrumentation and Measurement. IEEE Trans. Instrum. Meas?2009, 58, 291–296, doi:10.1109/TIM.2008.2005965.
[8]
Kalgren, P.; Baybutt, M.; Ginart, A.; Minnella, C.; Roemer, M.; Dabney, T. Application of Prognostic Health Management in Digital Electronic Systems. Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, March 2007; pp. 1–9.
[9]
Brown, D.; Kalgren, P.; Byington, C.; Roemer, J. Electronic Prognostics—A Case Study Using Global Positioning System (GPS). Microelectron. Rel?2007, 47, 1874–1881, doi:10.1016/j.microrel.2007.02.020.
[10]
Kulkarni, C.; Biswas, G.; Koutsoukos, X. A Prognosis Case Study for Electrolytic Capacitor Degradation in DC-DC Converters. Proceedings of Annual Conference of the Prognostics and Health Management Society, San Diego, CA, USA, September 2009.
[11]
Gu, J.; Barker, D.; Pecht, M. Prognostics Implementation of Electronics under Vibration Loading. Microelectron. Rel?2007, 47, 1849–1856, doi:10.1016/j.microrel.2007.02.015.
[12]
Pecht, M.; Dasgupta, A. Physics-of-Failure: An Approach to Reliable Product Development. J. Inst. Environ. Sci?1995, 38, 30–34.
[13]
Andrew, H. Real Prognostics—Challenges, Issues, and Lessons Learned: Chasing the Big “P”. Proceedings of the First International Forum on Integrated System Health Engineering and Management in Aerospace, Napa Valley, CA, USA, November 7–10, 2005.
[14]
Jata, K.V.; Parthasarathy, T.A. Physics of Failure. Proceedings of the 1st International Forum on Integrated System Health Engineering and Management in Aerospace, Napa Valley, CA, USA, November 7–10, 2005.
[15]
Kia Motors. Kia Safety: Future of Safety, Available online: http://www.kia.co.nz/PlanetKia/Kias-Commitment-To-Sustainability/Kia-Safety.aspx (accessed on 1 June 2010).
[16]
Tuchband, B.; Cheng, S.; Pecht, M. Technology Assessment of Sensor Systems for Prognostics and Health Monitoring. Proceedings of IMAPS on Military, Aerospace, Space and Homeland Security: Packaging Issues and Applications (MASH), Baltimore, MD, USA, May 2007.
[17]
Cheng, S.; Tom, K.; Thomas, L.; Pecht, M. A Wireless Sensor System for Prognostics and Health Management. IEEE Sens. J?2010, 10, 856–862, doi:10.1109/JSEN.2009.2035817.
[18]
Ganesan, S.; Eveloy, V.; Das, D.; Pecht, M. Identification and Utilization of Failure Mechanisms to Enhance FMEA and FMECA. Proceedings of the IEEE Workshop on Accelerated Stress Testing and Reliability (ASTR), Austin, TX, USA, October 3–5, 2005.
[19]
IEEE Standard 1413.1-2002—IEEE Guide for Selecting and Using Reliability Predictions Based on IEEE 1413; IEEE: New York, NY, USA, 2003.
[20]
Sato, K.; Ogata, Y.; Ohno, K.; Ikeo, H. Mechanism of Ceramic Capacitor Leakage Failures Due to Low DC Stress. Proceedings of the 18th International Reliability Physics Symposium, Los Angeles, CA, USA, April 1980; pp. 205–212.
[21]
Keimasi, M.; Azarian, M.; Pecht, M. Isothermal Aging Effects on Flex Cracking of Multilayer Ceramic Capacitors with Standard and Flexible Terminations. Microelectron. Rel?2007, 47, 2215–2225, doi:10.1016/j.microrel.2006.12.005.
[22]
Donahoe, D.; Pecht, M.; Lloyd, I.; Ganesan, S. Moisture Induced Degradation of Multilayer Ceramic Capacitors. Microelectron. Rel?2006, 46, 400–408, doi:10.1016/j.microrel.2005.05.008.
[23]
Davis, G.D.; Dacres, C.M.; Krebs, L.A. In Situ Corrosion Sensor for Coating Testing and Screening. Mater. Perform?2000, 39, 46–51.
[24]
Pacheco, M.; Wang, Z.; Skoglund, L.; Liu, Y.; Medina, A.; Raman, A.; Dias, R.; Goyal, D.; Ramanathan, S. Advanced Fault Isolation and Failure Analysis Techniques for Future Package Technologies. Intel Technol. J?2005, 9, 337–352.
[25]
Sophian, A.; Tian, G.Y.; Zairi, S. Pulsed Magnetic Flux Leakage Techniques for Crack Detection and Characterization. Sensor. Actuator. A-Phys?2006, 125, 186–191, doi:10.1016/j.sna.2005.07.013.
[26]
Van Velsor, J.; Owens, S.; Rose, J. Guided Waves for Nondestructive Testing of PipesUS. Patent US 2009/0150094 A1, June 11, 2009.
[27]
Wan, K.; Leung, C. Fiber Optic Sensor for the Monitoring of Mixed Mode Cracks in Structures. Sensor. Actuator. A-Phys?2007, 135, 370–380, doi:10.1016/j.sna.2006.08.002.
[28]
Sotiris, V.; Tse, P.; Pecht, M. Anomaly Detection through a Bayesian Support Vector Machine. J. Trans?2010, 1, 1–11.
[29]
Kumar, S.; Dolev, E.; Pompetzki, M.; Pecht, M. A Residual Estimation Based Approach for Isolating Faulty Parameters. Proceedings of IEEE Aerospace Conference, Big Sky, MT, USA, March 7–14, 2009.
[30]
Bernstein, D. Sensor Performance Specifications. IEEE Control Syst. Mag?2001, 21, 9–18, doi:10.1109/37.939939.
[31]
ISO/IEC Guide 99:2007. International Vocabulary of Metrology—Basic and General Concepts and Associated Terms (VIM); ISO: Geneva, Switzerland, 2007.
[32]
Wilson, J. Sensor Technology Handbook; Elsevier/Newnes: Burlington, MA, USA, 2005.
[33]
Webster, J. The Measurement, Instrumentation and Sensors Handbook; CRC/IEEE Press: Boca Raton, FL, USA, 1999.
[34]
Fraden, J. AIP Handbook of Modern Sensors. Physics, Designs and Applications; AIP: Woodbury, NY, USA, 1997.
[35]
Gu, J.; Barker, D.; Pecht, M. Uncertainty Assessment of Prognostics of Electronics Subject to Random Vibration. Proceedings of AAAI Fall Symposium on Artificial Intelligence for Prognostics, Arlington, VA, USA, November, 2007; pp. 50–57.
[36]
Gu, J.; Vichare, N.; Tinsley, E.; Pecht, M. Computer Usage Monitoring for Design and Reliability Tests. IEEE Trans. Compon. Packag. Technol?2009, 32, 550–556, doi:10.1109/TCAPT.2009.2013202.
[37]
Akyildiz, I.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. Wireless Sensor Networks: A Survey. Comput. Netw?2002, 38, 393–422, doi:10.1016/S1389-1286(01)00302-4.
[38]
Want, R. An Introduction to RFID Technology. IEEE Perv. Comp?2006, 5, 25–33, doi:10.1109/MPRV.2006.2.
[39]
RFID Journal. Available online: http://www.rfidjournal.com/faq/17 and http://www.rfidjournal.com/faq/18/ (accessed on 22 July 2009).
[40]
Chatschik, B. An Overview of the Bluetooth Wireless Technology. IEEE Commun. Mag?2001, 39, 86–94.
[41]
SIG Bluetooth. Bluetooth Specifications. Available online: http://bluetooth.com/Bluetooth/Technology/Building/Specifications/Default.htm/ (accessed on 22 July 2009).
[42]
O’Hara, B.; Petrick, A. IEEE 802.11 Handbook: A Designer’s Companion; IEEE Press, 2004.
[43]
Baronti, P.; Pillai, P.; Chook, V.; Chessa, S.; Gotta, A.; Hu, Y.F. Wireless Sensor Networks: A Survey on the State of the Art and the 802.15.4 and ZigBee Standards. Comput. Commun?2007, 30, 1655–1695, doi:10.1016/j.comcom.2006.12.020.
[44]
Foerster, J.; Green, E.; Somayazulu, S.; Leeper, D. Ultra-Wideband Technology for Short or Medium Range Wireless Communication. Intel Technol. J?2001, Q2, 1–11.
[45]
Wireless USB Specification Revision 1.0. Available online: http://www.usb.org/developers/wusb/wusb_2007_0214.zip/ (accessed on 22 July 2009).
[46]
Karygiannis, T.; Eydt, B.; Barber, G.; Bunn, L.; Phillips, T. Guidelines for Securing Radio Frequency Identification (RFID) Systems. NIST Special Publication 800-98;; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2007.
[47]
Shorey, R. Mobile, Wireless, and Sensor Networks: Technology, Applications, and Future Directions; Wiley-IEEE Press: Hoboken, NJ, USA, 2006.
[48]
Walters, J.; Liang, Z.; Shi, W.; Chaudhary, V. Wireless Sensor Network Security: A Survey. In Security in Distributed, Grid, Mobile, and Pervasive Computing; Xiao, Y., Ed.; CRC Press: Boca Raton, FL, USA, 2007. Chapter 16..
[49]
SpaceAge Control. Sensor Total Cost of Ownership, Available online: http://www.spaceagecontrol.com/s054a.htm/ (accessed on 22 July 2009).
[50]
Ibarguengoytia, P.; Vadera, S.; Sucar, L. A Probabilistic Model for Information and Sensor Validation. Comput. J?2006, 49, 113–126.
[51]
Metras, H. Trends in Wireless Sensors: Potential Contributions of Nanotechnologies and Smart Systems Integration Issues. Proceedings of 2006 IST Conference, Helsinki, Japan, November 2006.
[52]
STMicroelectronics. STMicroelectronics Unveils Ultra-Low-Power Technology Platform for 8-Bit and 32-Bit Microcontrollers, Enabling Next-Generation Power-Saving Products. Available online: http://www.st.com/stonline/stappl/cms/press/news/year2009/p2389.htm/ (accessed on 20 July 2009).
[53]
Fry, N.D.; Holcomb, E.D.; Munro, K.J.; Oakes, C.L.; Maston, J.M. Compact Portable Electric Power Sources. Oak Ridge National Laboratory Report ORNL/TM-13360;; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1997.
[54]
Glynne-Jones, P.; White, M.N. Self-Powered Systems: A Review of Energy Sources. Sens. Rev?2001, 21, 91–97, doi:10.1108/02602280110388252.
[55]
Roundy, J.S. Energy Scavenging for Wireless Sensor Nodes with a Focus on Vibration to Electricity Conversion. PhD. Dissertation,; Department of Mechanical Engineering, University of California: Berkeley, CA, USA, 2003.
[56]
Qiwai, A.M.; Thomas, P.J.; Kellogg, C.J.; Baucom, J. Energy Harvesting Concepts for Small Electric Unmanned Systems. Proc. SPIE?2004, 5387, 84–95.
[57]
Paradiso, A.J.; Starner, T. Energy Scavenging for Mobile and Wireless Electronics. IEEE Pervasive Comput?2005, 4, 18–27.
[58]
Mateu, L.; Moll, F. Review of Energy Harvesting Techniques and Applications for Microelectronics. Proc. SPIE?2005, 5837, 359–373.
[59]
Eschenauer, L.; Gligor, V. A Key-Management Scheme for Distributed Sensor Networks. Proceedings of the 9th ACM Conference on Computer and Communications Security, Washington, DC, USA, November 18–22, 2002; pp. 41–47.
[60]
Betts, B. Smart Sensors. IEEE Spectrum Mag?2006, 43, 50–53.
[61]
Akyildiz, I.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. Wireless Sensor Networks: A Survey. Comput. Netw?2002, 4, 393–422.
[62]
Kwon, D.; Azarian, M.; Pecht, M. Early Detection of Interconnect Degradation by Continuous Monitoring of RF Impedance. IEEE Trans. Dev. Mater. Rel?2009, 9, 296–304, doi:10.1109/TDMR.2009.2020170.