In the past two decades, Micro Fluidic Systems (MFS) have emerged as a powerful tool for biosensing, particularly in enriching and purifying molecules and cells in biological samples. Compared with conventional sensing techniques, distinctive advantages of using MFS for biomedicine include ultra-high sensitivity, higher throughput, in-situ monitoring and lower cost. This review aims to summarize the recent advancements in two major types of micro fluidic systems, continuous and discrete MFS, as well as their biomedical applications. The state-of-the-art of active and passive mechanisms of fluid manipulation for mixing, separation, purification and concentration will also be elaborated. Future trends of using MFS in detection at molecular or cellular level, especially in stem cell therapy, tissue engineering and regenerative medicine, are also prospected.
References
[1]
Squires, TM; Quake, SR. Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys?2005, 77, 977–1026, doi:10.1103/RevModPhys.77.977.
[2]
Bringer, MR; Gerdts, CJ; Song, H; Tice, JD; Ismagilov, RF. Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets. Phil. Trans. R. Soc. Lond. A?2004, 362, 1087–1104, doi:10.1098/rsta.2003.1364.
[3]
Weibel, DB; Whitesides, GM. Applications of microfluidics in chemical biology. Curr. Opin. Chem. Biol?2006, 10, 584–591, doi:10.1016/j.cbpa.2006.10.016. 17056296
Hong, J; Edel, JB; deMello, AJ. Micro-and nanofluidic systems for high-throughput biological screening. Drug Discovery Today?2009, 14, 134–146, doi:10.1016/j.drudis.2008.10.001. 18983933
[6]
Sato, K; Mawatari, K; Kitamori, T. Microchip-based cell analysis and clinical diagnosis system. Lab Chip?2008, 8, 1992–1998, doi:10.1039/b814098g. 19023462
[7]
Gardeniers, JGE; Berg, Avd. Lab-on-a-chip systems for biomedical and environmental monitoring. Anal. Bioanal. Chem?2004, 378, 1700–1703, doi:10.1007/s00216-003-2435-7. 14758457
[8]
Harrison, DJ; Fluri, K; Seiler, K; Fan, Z; Effenhauser, CS; Manz, A. Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science?1993, 261, 895–897, doi:10.1126/science.261.5123.895. 17783736
[9]
Andersson, H; Berg, Avd. Microtechnologies and nanotechnologies for single-cell analysis. Curr. Opin. Biotechnol?2004, 15, 44–49, doi:10.1016/j.copbio.2004.01.004. 15102465
Tice, JD; Song, H; Lyon, AD; Ismagilov, RF. Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers. Langmuir?2003, 19, 9127–9133, doi:10.1021/la030090w.
[12]
Huebner, A; Srisa-Art, M; Holt, D; Abell, C; Hollfelder, F; deMello, AJ; Edel, JB. Quantitative detection of protein expression in single cells using droplet microfluidics. Chem Commun?2007, 1218–1220.
[13]
Kelly, BT; Baret, JC; Taly, V; Griffiths, AD. Miniaturizing chemistry and biology in microdroplets. Chem Commun?2007, 1773–1788.
[14]
Truong, TQ; Nguyen, NT. A polymeric piezoelectric micropumps based on lamination technology. J. Micromech. Microeng?2003, 14, 632–638.
[15]
Cho, SK; Moon, H; Kim, CJ. Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J Microelectromech Syst?2003, 1270–1280.
Darabi, J; Rada, M; Ohadi, M; Lawler, J. Design, fabrication, and testing of an electrohydrodynamic ion-drag micropump. J. Microelectomech. Syst?2002, 11, 684–690, doi:10.1109/JMEMS.2002.805046.
[18]
Jones, TB. Liquid dielectrophoresis on the microscale. J Electrostat?2001, 51/52, 290–299, doi:10.1016/S0304-3886(01)00074-2.
[19]
Pollack, MG; Fair, RB; Shenderov, AD. Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl. Phys. Lett?2000, 77, 1725–1727, doi:10.1063/1.1308534.
[20]
Pollack, MG; Shenderov, AD; Fair, RB. Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip?2002, 2, 96, doi:10.1039/b110474h. 15100841
[21]
Torkkeli, A; Saarilahti, J; Haara, A; Harma, H; Soukka, T; Tolonen, P. Electrostatic transportation of water droplets on superhydrophobic surfaces. The 14th International Conference on Micro Electro Mechanical Systems: MEMS 2001, Interlaken, Switzerland, January 2001; pp. 475–478.
[22]
Mugele, F; Herminghaus, S. Electrostatic stabilization of fluid microstructures. App. Phys. Lett?2002, 81, 2303–2305, doi:10.1063/1.1508808.
[23]
Linder, V; Sia, SK; Whitesides, GM. Reagent-loaded cartridges for valveless and automated fluid delivery in microfluidic devices. Anal. Chem?2005, 77, 64–71, doi:10.1021/ac049071x. 15623279
[24]
Marmottant, P; Hilgenfeldt, S. A bubble-driven microfluidic transport element for bioengineering. Proc. Natl. Acad. Sci?2004, 101, 9523–9527, doi:10.1073/pnas.0307007101. 15210976
[25]
Jun, TK; Kim, CJ. Valveless pumping using traversing vapor bubbles in microchannels. J. Appl. Phys?1998, 83, 5658–5664, doi:10.1063/1.367419.
[26]
Huh, D; Tkaczyk, AH; Bahng, JH; Chang, Y; Wei, HH; Grotberg, JB; Kim, CJ; Kurabayashi, K; Takayama, SJ. Reversible switching of high-speed air-liquid two-phase flows using electrowetting-assisted flow-pattern change. J. Am. Chem. Soc?2003, 125, 14678–14679, doi:10.1021/ja037350g. 14640622
[27]
Gallardo, BS; Gupta, VK; Eagerton, FD; Jong, LI; Craig, VS; Shah, RR; Abbott, NL. Electrochemical principles for active control of liquids on submillimeter scales. Science?1999, 283, 57–60, doi:10.1126/science.283.5398.57. 9872739
[28]
Green, NG; Ramos, A; Gonzalez, A; Morgan, H; Castellanos, A. Fluid flow induced by nonuniform ac electric field in electrolytes on microelectrodes: I. Experimental measurements. Phys. Rev. E?2000, 61, 4011–4018, doi:10.1103/PhysRevE.61.4011.
[29]
Brown, AB; Smith, CG; Rennie, AR. Pumping of water with ac electric fields applied to asymmetric pairs of microelectrodes. Phys. Rev. E?2000, 63, 16305, doi:10.1103/PhysRevE.63.016305.
Zhu, X; Phadke, N; Chang, J; Cho, B; Huh, D; Takayama, S. Gravity-Driven Microfluidic Pump with a Steady Flow Rate. Proceedings of the Micro Total Analysis Systems, Nara, Japan, November 2002; pp. 151–153.
[32]
Huh, D; Wei, HH; Kripfgans, OD; Fowlkes, JB; Grotberg, JB; Takayama, S. Gravity-Driven Microhydrodynamics-Based Cell Sorter (microHYCS) for Rapid, Inexpensive, and Efficient Cell Separation and Size-Profiling. Proceedings of the 2nd IEEE-EMBS Special Topics Conference on Microtechnologies in Medicine & Biology, Madison, WI, USA, May 2002; pp. 466–469.
[33]
Su, YC; Lin, LW. A water-powered micro drug delivery system. J Microelectromech Syst?2004, 13, 75–82, doi:10.1109/JMEMS.2003.823215.
[34]
Su, YC; Lin, LW; Pisano, AP. A water-powered osmotic microactuator. J. Microelectromech. Syst?2002, 11, 736–742, doi:10.1109/JMEMS.2002.805045.
[35]
Effenhauser, CS; Harttig, H; Kramer, P. An evaporating-based disposable micropump concept for continuous monitoring applications. Biomed. Microdevices?2002, 4, 27–32, doi:10.1023/A:1014215728074.
[36]
Eddington, DT; Beebe, DJ. A valved responsive hydrogel microdispensing device with integrated pressure source. J. Microelectromech. Syst?2004, 13, 586–593, doi:10.1109/JMEMS.2004.832190.
[37]
Brian, T; Christopher, N; Davis, RH. An effervescent reaction micropump for portable microfluidic systems. Lab Chip?2006, 6, 659–666, doi:10.1039/b601542e. 16652182
[38]
Bien, DCS; Mitchell, SJN; Gamble, HS. Fabrication and characterization of a micromachined passive valve. J. Micromech. Microeng?2003, 13, 557–562, doi:10.1088/0960-1317/13/5/305.
[39]
Nguyen, NT; Truong, TQ; Wong, KK; Ho, SS; Low-N, CL. Micro check valves for integration into polymeric microfluidic devices. J. Micromech. Microeng?2004, 14, 69–75, doi:10.1088/0960-1317/14/1/309.
[40]
Bien, DCS; Mitchell, SJN; Gamble, HS. Fabrication and characterization of a micromachined passive valve. J. Micromech. Microeng?2003, 13, 557–562, doi:10.1088/0960-1317/13/5/305.
[41]
Yamahata, C; Lacharme, F; Burri, Y; Gijs, MAM. A ball valve micropump in glass fabricated by powder blasting. Sens. Actuator. B?2005, 110, 1–7, doi:10.1016/j.snb.2005.01.005.
[42]
Pan, T; McDonald, SJ; Kai, EM; Ziaie, B. A magnetically driven PDMS micropump with ball check-valves. J. Micromech. Microeng?2005, 15, 1021–1026, doi:10.1088/0960-1317/15/5/018.
[43]
Stemme, E; Stemme, G. A valveless diffuser/nozzle-based fluid pump. Sens. Actuator. A?1993, 39, 159–167, doi:10.1016/0924-4247(93)80213-Z.
[44]
Gerlach, T. Microdiffusers as dynamic passive valves for micropump applications. Sens. Actuator. A?1998, 69, 181–191, doi:10.1016/S0924-4247(98)00056-9.
[45]
Andersson, H; Wijngaart, Wvd; Nilsson, P; Enoksson, P; Stemme, G. A valve-less diffuser micropump for microfluidic analytical systems. Sens. Actuator. B?2001, 72, 259–265, doi:10.1016/S0925-4005(00)00644-4.
Koch, M; Evans, AGR; Brunnschweiler, A. The dynamic micropump driven with a screen printed PZT actuator. J. Micromech. Microeng?1998, 8, 119–122, doi:10.1088/0960-1317/8/2/019.
[48]
Morris, CJ; Forster, FK. Low-order modeling of resonance for fixed-valve micropumps based on first principles pump. J. Microelectromech. Syst?2003, 12, 325–334, doi:10.1109/JMEMS.2003.809965.
[49]
Feldt, C; Chew, L. Geometry-based macro-tool evaluation of non-moving-part valvular microchannels. J. Micromech. Microeng?2002, 12, 662–669, doi:10.1088/0960-1317/12/5/323.
[50]
Yamada, M; Seki, M. Nanoliter-sized liquid dispenser array for multiple biochemical analysis in microfluidic devices. Anal. Chem?2004, 76, 895–899, doi:10.1021/ac0350007. 14961718
[51]
Melin, J; Roxhed, N; Gimenez, G; Griss, P; Wijngaart, Wvd; Stemme, G. A liquid-triggered liquid microvalve for on-chip flow control. Sens. Actuators B?2004, 100, 463–468, doi:10.1016/j.snb.2004.03.010.
[52]
Leu, TS; Chang, PY. Pressure barrier of capillary stop valves in micro sample separators. Sens. Actuators A?2004, 115, 508–515, doi:10.1016/j.sna.2004.02.036.
[53]
Andersson, H; Wijngaart, Wvd; Griss, P; Niklaus, F; Stemme, G. Hydrophobic valves of plasma deposited octafluorocyclobutane in DRIE channels. Sens. Actuators B?2001, 75, 136–141, doi:10.1016/S0925-4005(00)00675-4.
[54]
Andersson, H; Wijngaart, Wvd; Stemme, G. Micromachined filter-chamber array with passive valves for biochemical assays on beads. Electrophoresis?2001, 22, 249–257, doi:10.1002/1522-2683(200101)22:2<249::AID-ELPS249>3.0.CO;2-4. 11288892
[55]
Kamholz, AE; Weigl, BH; Finlayso, BA; Yager, P. Quantitative analysis of molecular interactive in microfluidic channel: the T-sensor. Anal. Chem?1999, 71, 5340–5347, doi:10.1021/ac990504j. 10596213
[56]
Kamholz, AE; Yager, P. Molecular diffusive scaling laws in pressure-driven microfluidic channels: deviation from one-dimensional Einstein approximations. Sens. Actuators B?2002, 82, 117–121, doi:10.1016/S0925-4005(01)00990-X.
[57]
Ismagilov, RF; Stroock, AD; Kenis, PJA; Whitesides, GM; Stone, HA. Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels. Appl. Phys. Lett?2000, 76, 2376–2378, doi:10.1063/1.126351.
[58]
Veenstra, TT; Lammerink, TSJ; Elwenspoek, MC; Berg, Avd. Characterization method for a new diffusion mixer applicable in micro flow injection analysis systems. J. Micromech. Microeng?1999, 9, 199–202, doi:10.1088/0960-1317/9/2/323.
[59]
Jackman, RJ; Floyd, TM; Ghodssi, R; Schmidt, MA; Jensen, KF. Microfluidic systems with on-line UV detection fabricated in photodefineable epoxy. J. Micromech. Microeng?2001, 11, 263–269, doi:10.1088/0960-1317/11/3/316.
[60]
Koch, M; Witt, H; Evans, AGR; Brunnschweiler, A. Improved characterization technique for micromixers. J. Micromech. Microeng?1999, 9, 156–158, doi:10.1088/0960-1317/9/2/312.
[61]
Wang, H; Iovenitti, P; Harvey, E; Masood, S. Optimizing layout of obstacles for enhanced mixing in microchannels. Smart Mater. Struct?2002, 11, 662–667, doi:10.1088/0964-1726/11/5/306.
Yager, P; Brody, JP. Diffusion-based extraction in a microfabricated device. Sens. Actuator?1997, 58, 13–18, doi:10.1016/S0924-4247(97)80219-1.
[65]
Wu, RG; Yang, CS; Wang, PC; Tseng, FG. Nanostructured pillars based on vertically aligned carbon nanotubes as the stationary phase in micro-CEC. Electrophoresis?2009, 30, 2025–2031, doi:10.1002/elps.200900113. 19582706
[66]
Wu, RG; Yang, CS; Lian, CK; Chieng, CC; Tseng, FG. Dual-Asymmetry Electrokinetic Flow (DAEKF) Focusing for Pre-concentration and Analysis of Catecholamines in CEEC Nanochannels. Electrophoresis?2009, 12, 2025.
[67]
Sharma, NR; Lukyanov, A; Bardell, RL; Seifried, L; Shen, M. Development of an evaporation-based microfluidic sample concentrator. Proceedings of the SPIE, Boston, MA, USA, January 2008; 6886, pp. 68860R1–9.
Lee, YF; Tawfik, DS; Griffiths, AD. Investigating the target recognition of DNA cytosine-5 methyltransferase HhaI by library selection using in vitro compartmentalization. Nucleic Acids Res?2002, 30, 4937–4944, doi:10.1093/nar/gkf617. 12433997
[75]
Agresti, JJ; Kelly, BT; J?schke, A; Griffiths, AD. Selection of ribozymes that catalyse multiple-turnover Diels–Alder cycloadditions by using in vitro compartmentalization. Proc. Natl. Acad. Sci. USA?2005, 102, 16170–16175, doi:10.1073/pnas.0503733102. 16260754
[76]
Ying, L; Bruckbauer, A; Zhou, D; Gorelik, J; Shevchuk, A; Lab, M; Korchev, Y; Klenerman, D. The scanned nanopipette: a new tool for high resolution bioimaging and controlled deposition of biomolecules. Phys. Chem. Chem. Phys?2005, 7, 2859–2866, doi:10.1039/b506743j. 16189604
[77]
Ying, L; Bruckbauer, A; Rothery, AM; Korchev, YE; Klenerman, D. Programmable delivery of DNA through a nanopipet. Anal. Chem?2002, 74, 1380–1385, doi:10.1021/ac015674m. 11922307
Liu, H; Zhang, Y. Droplet formation in a T-shaped microfluidic junction. J. Appl. Phys?2009, 106, 034906, doi:10.1063/1.3187831.
[84]
Anna, SL; Bontoux, N; Stone, HA. Formation of dispersions using “flow focusing” in microchannels. Appl. Phys. Lett?2009, 82, 364–366.
[85]
Huang, SH; Tan, WH; Tseng, FG; Takeuchi, S. A monolithically three-dimensional flow-focusing device for formation of single/double emulsions in closed/open microfluidic systems. J. Micromech. Microeng?2006, 16, 2336–2344, doi:10.1088/0960-1317/16/11/013.
[86]
Zourob, M; Mohr, S; Mayes, AG; Macaskill, A; Pérez-Moral, N; Fielden, PR; Goddard, NJ. A micro-reactor for preparing uniform molecularly imprinted polymer beads. Lab Chip?2006, 6, 296–301, doi:10.1039/b513195b. 16450041
[87]
Hufnagel, H; Huebner, A; Gülch, C; Güse, K; Abell, C; Hollfelder, F. An integrated cell culture lab on a chip: modular microdevices for cultivation of mammalian cells and delivery into microfluidic microdroplets. Lab Chip?2009, 9, 1576–1582, doi:10.1039/b821695a. 19458865
[88]
Courtois, F; Olguin, LF; Whyte, G; Bratton, D; Huck, WTS; Abell, C; Hollfelder, F. An integrated device for monitoring time-dependent in vitro expression from single gene in picolitre droplets. Chem. BioChem?2008, 9, 439–446.
[89]
Wang, KL; Jones, TB; Raisanen, A. Dynamic control of DEP actuation and droplet dispensing. J. Micromech. Microeng?2007, 17, 76–80, doi:10.1088/0960-1317/17/1/010.
[90]
Pollack, MG; Fair, RB; Shenderov, AD. Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl. Phys. Lett?2000, 77, 1725–1726, doi:10.1063/1.1308534.
[91]
Zeng, J; Korsmeyer, T. Principles of droplet electrohydrodynamics for lab-on-a-chip. Lab Chip?2004, 4, 265–277, doi:10.1039/b403082f. 15269791
[92]
Ho, CE; Chieng, CC; Chen, MH; Tseng, FG. Rapid microarray system for passive batch-filling and in-parallel-printing protein solution. J. Microelectromech. Syst?2008, 17, 309–317, doi:10.1109/JMEMS.2008.916312.
[93]
Ho, CE; Chieng, CC; Chen, MH; Tseng, FG. Micro-stamp systems for batch-filling, parallel-spotting, and continuously printing of multiple biosample fluids. J. Assoc. Lab. Autom?2008, 13, 187–197, doi:10.1016/j.jala.2008.04.003.
[94]
Cordero, ML; Burnham, DR; Baroud, CN; McGloin, D. Thermocapillary manipulation of droplets using holographic beam shaping: microfluidic pin ball. Appl. Phys. Lett?2008, 93, 034107, doi:10.1063/1.2952374.
[95]
Tseng, YT; Tseng, FG; Chen, YF; Chieng, CC. Fundamental studies on micro-droplet movement by Marangoni and capillary effects. Sens. Act. A?2004, 114, 292–301, doi:10.1016/j.sna.2003.12.007.
Schaerliab, Y; Hollfelder, F. The potential of microfluidic water-in-oil droplets in experimental biology. Mol. BioSyst?2009, 5, 1392–1404, doi:10.1039/b907578j. 20023716
[115]
Kumaresan, P; Yang, CJ; Cronier, SA; Blazej, RG; Mathies, RA. High-throughput single copy DNA amplification and cell analysis in engineered nanoliter droplets. Anal. Chem?2008, 80, 3522–3529, doi:10.1021/ac800327d. 18410131
[116]
Schaerli, Y; Wootton, RC; Robinson, T; Stein, V; Dunsby, C; Neil, MAA; French, PMW; deMello, AJ; Abell, C; Hollfelder, F. Continuous-flow polymerase chain reaction of single-copy DNA in microfluidic microdroplets. Anal. Chem?2009, 81, 302–306, doi:10.1021/ac802038c. 19055421
[117]
Chabert, M; Dorfman, KD; Cremoux, Pd; Roeraade, J; Viovy, JL. Automated microdroplet platform for sample manipulation and polymerase chain reaction. Anal. Chem?2006, 78, 7722–7728, doi:10.1021/ac061205e. 17105164
Leemhuis, H; Stein, V; Griffiths, AD; Hollfelder, F. New genotype-phenotype linkages for directed evolution of functional proteins. Curr. Opin. Struct. Biol?2005, 15, 472–478, doi:10.1016/j.sbi.2005.07.006. 16043338
[122]
Abbadie, Md; Hofreiter, M; Vaisman, A; Loakes, D; Gasparutto, D; Cadet, J; Woodgate, R; P??bo, S; Holliger, P. Molecular breeding of polymerases for amplification of ancient DNA. Nat. Biotechnol?2007, 25, 939–943, doi:10.1038/nbt1321. 17632524
[123]
Mastrobattista, E; Taly, V; Chanudet, E; Treacy, P; Kelly, BT; Griffiths, AD. High-throughput screening of enzyme libraries: in vitro evolution of a beta-galactosidase by fluorescence-activated sorting of double emulsions. Chem. Biol?2005, 12, 1291–1300, doi:10.1016/j.chembiol.2005.09.016. 16356846
[124]
Gan, R; Yamanaka, Y; Kojima, T; Nakano, H. Microbeads display of proteins using emulsion PCR and cell-free protein synthesis. Biotechnol. Prog?2008, 24, 1107–1114, doi:10.1002/btpr.43. 19194920
Monpichar, SA; Kang, DK; Hong, J; Park, H; Leatherbarrow, RJ; Edel, JB; Chang, SI; deMello, AJ. Analysis of protein-protein interactions by using droplet-based microfluidics. Chem. BioChem?2009, 10, 1605–1611.
[127]
Huebner, A; Sharma, S; Monpichar, SA; Hollfelder, F; Edel, JB; deMello, AJ. Microdroplets: A sea of applications. Lab Chip?2008, 8, 1244–1254, doi:10.1039/b806405a. 18651063
[128]
Song, H; Chen, DL; Ismagilov, RF. Reactions in droplets in microfluidic channels. Angew. Chem. Int. Ed?2006, 45, 7336–7356, doi:10.1002/anie.200601554.
[129]
Zhu, Y; Power, BE. Lab-on-a-chip in vitro compartmentalization technologies for protein studies. Adv. Biochem. Eng. Biotechnol?2008, 110, 81–114. 18594785
Schaerliab, Y; Hollfelder, F. The potential of microfluidic water-in-oil droplets in experimental biology. Mol. BioSyst?2009, 5, 1392–1404, doi:10.1039/b907578j. 20023716
Seong, GH; Heo, J; Crooks, RH. Measurement of enzyme kinetics using a continuous-flow microfluidic system. Anal. Chem?2003, 75, 3161–3167, doi:10.1021/ac034155b. 12964765
[134]
Arshady, R. Microspheres for biomedical applications: preparation of reactive and labelled microspheres. Biomaterials?1993, 14, 218–224.
[135]
Zhang, H; Huang, H; Lv, R; Chen, M. Micron-size crosslinked microspheres bearing carboxyl groups via dispersion copolymerization. Colloids and Surfaces A: Physicochem. Eng. Aspects?2005, 253, 217–221, doi:10.1016/j.colsurfa.2004.11.008.
[136]
Seo, M; Nie, Z; Xu, S; Lewis, PC; Kumacheva, E. Microfluidics: from dynamic lattices to periodic arrays of polymer disks. Langmuir?2005, 21, 4773–4775, doi:10.1021/la050070p. 15896006
[137]
Nisisako, T; Torii, T. Formation of biphasic janus droplets in a microfabricated channel for the synthesis of shape-controlled polymer microparticles. Adv. Mater?2007, 19, 1489–1493, doi:10.1002/adma.200700272.
Utada, AS; Lorenceau, E; Link, DR; Kaplan, PD; Stone, HA; Weitz, DA. Monodisperse double emulsions generated from a microcapillary device. Science?2005, 308, 537–541, doi:10.1126/science.1109164. 15845850
[140]
Huang, SH; Khoo, HS; Tseng, FG. Synthesis of bio-functionalized copolymer particles bearing carboxyl groups via a microfluidic device. Microfluid Nanofluid?2008, 5, 459–468, doi:10.1007/s10404-008-0283-7.
[141]
Clark, TJ; McPherson, PH; Buechler, KF. The triage cardiac panel: Cardiac markers for the triage system. Point Care?2002, 1, 42–46.
[142]
Qureshi, ZMT; Alocilja, EC. Fabrication of a Disposable Biosensor for Escherichia coli O157:H7 Detection. IEEE Sensor. J?2003, 3, 345–351, doi:10.1109/JSEN.2003.815782.
[143]
Ryan, J; Dave, K; Emmerich, E; Fernandez, B; Turell, M; Johnson, J; Gottfried, K; Burkhalter, K; Kerst, A; Hunt, A; Wirtz, R; Nasci, R. Wicking Assays for the Rapid Detection of West Nile and St. Louis Encephalitis Viral Antigens in Mosquitoes (Diptera: Culicidae). J. Med. Entomol?2003, 40, 95–99, doi:10.1603/0022-2585-40.1.95. 12597660
[144]
Fernandez-Sanchez, C; Gallardo-Soto, AM; Rawson, K; Nilsson, O; McNeil, CJ. Quantitative Impedimetric Immunosensor for Free and Total Prostate Specific Antigen Based on a Lateral Flow Assay Format. Electrochem. Commun?2004, 6, 138–143, doi:10.1016/j.elecom.2003.11.002.
[145]
Yager, P; Edwards, T; Fu, E; Helton, K; Nelson, K; Tam, MR; Weigl, BH. Microfluidic diagnostic technologies for global public health. Nature?2006, 442, 412–418, doi:10.1038/nature05064. 16871209
[146]
Ali, JE; Sorger, PK; Jensen1, KF. Lab-on-a-chip: microfluidics in drug discovery. Nature?2006, 442, 403–411, doi:10.1038/nature05063. 16871208
Rupak, D; Philip, JR. Scrapheap challenge and single cell. Lab Chip?2008, 8, 1774–1778, doi:10.1039/b811692j. 18941672
[149]
Tweedie, M; Subramanian, R; Lemoine, P; Craig, I; McAdams, ET; McLaughlin, JA; MacCraith, B; Kent, N. Fabrication of impedimetric sensors for label-free Point-of-Care immunoassay cardiac marker systems, with passive microfluidic delivery. Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, August 2006; pp. 4610–4614.
[150]
McMurray, AA; Ali, Z; Kyselovik, J; Mills, CA; Renault, NJ; Santha, H; Strohh?fer, C. A Novel Point of Care Diagnostic Device: Impedimetric Detection of a Biomarker in Whole Blood. Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, August 2007; pp. 115–118.
[151]
The Triage MeterPro Meter. Available online: http://www.biosite.com (accessed on 6 July 2010).
[152]
Nolan, JP; Sklar, LA. Suspension array technology: Evolution of the flat array paradigm. Trends Biotechnol?2002, 20, 9–12, doi:10.1016/S0167-7799(01)01844-3. 11742671
Kasicka, V. Recent developments in capillary electrophoresis and capillary electrochromatography of peptides. Electrophoresis?2006, 27, 142–175, doi:10.1002/elps.200500527. 16307429
[162]
Sims, CE; Allbritton, NL. Analysis of single mammalian cells on-chip. Lab Chip?2007, 7, 423–440, doi:10.1039/b615235j. 17389958
[163]
Andersson, H; Berg, Avd. Microtechnologies and nanotechnologies for single-cell analysis. Curr. Opin. Biotechnol?2004, 15, 44–49, doi:10.1016/j.copbio.2004.01.004. 15102465
[164]
Andersson, H; Berg, Avd. Microfluidic devices for cellomics: A review. Sens. Actuators B?2003, 92, 315–325, doi:10.1016/S0925-4005(03)00266-1.
[165]
Chao, TC; Ros, A. In vivo Osteocyte Death. J. R. Soc. Interface?2008, 5, 139–150, doi:10.1098/rsif.2008.0233.focus.
[166]
Bossi, A; Piletsky, SA; Righetti, PG; Turner, PF. Capillary electrophoresis coupled to biosensor detection. J. Chromatogra. A?2000, 892, 143–153, doi:10.1016/S0021-9673(00)00173-4.
[167]
Spegel, C; Heiskanen, A; Skjolding, HD; Emneus, J. Chip based electroanalytical systems for cell Analysis. Electroanalysis?2008, 6, 680–702.
[168]
Shim, J; Olguin, LF; Whyte, G; Scott, D; Babtie, A; Abell, C; Huck, WTS; Hollfelder, F. Simultaneous Determination of Gene Expression and Enzymatic Activity in Individual Bacterial Cells in Microdroplet Compartments. J. Am. Chem. Soc?2009, 131, 15251–15256, doi:10.1021/ja904823z. 19799429
[169]
Schmitz, CHJ; Rowat, AC; K?ster, S; Weitz, DA. Dropspots: a picoliter array in a microfluidic device. Lab Chip?2009, 9, 44–49, doi:10.1039/b809670h. 19209334
[170]
Hufnagel, H; Huebner, A; Gülch, C; Güse, K; Abell, C; Hollfelder, F. An integrated cell culture lab on a chip: modular microdevices for cultivation of mammalian cells and delivery into microfluidic microdroplets. Lab Chip?2009, 9, 1576–1582, doi:10.1039/b821695a. 19458865
[171]
Brouzes, E; Medkova, M; Savenelli, N; Marran, D; Twardowski, M; Hutchison, JB; Rothberg, JM; Link, DR; Perrimon, N; Samuels, ML. Droplet microfluidic technology for single-cell high-throughput screening. Proc. Natl. Acad. Sci. USA?2009, 106, 14195–14200, doi:10.1073/pnas.0903542106. 19617544
[172]
Johnsson, K. Visualizing biochemical activities in living cells. Nat. Chem. Biol?2009, 5, 63–65, doi:10.1038/nchembio0209-63. 19148167
[173]
Carpenter, AE. Extracting rich information from images. Methods Mol. Biol?2009, 486, 193–211. 19347625
[174]
Robinson, T; Schaerli, Y; Wootton, RC; Hollfelder, F; Dunsby, C; Baldwin, GS; Neil, MAA; French, PMW; deMello, AJ. Removal of background signals from fluorescence thermometry measurements in PDMS microchannels using fluorescence lifetime imaging. Lab Chip?2009, 9, 3437–3441, doi:10.1039/b913293g. 19904413
Wu, MH; Huang, SB; Cui, Z; Cui, Z; Lee, GB. Development of perfusion-based micro 3-D culture platform and its application for high throughput drug testing. Sensor. Acuat. B?2008, 129, 231–240, doi:10.1016/j.snb.2007.07.145.
[180]
Monat, C; Domachuk, P; Grillet, C; Collins, M; Eggleton, BJ; Cronin-Golomb, M; Mutzenich, S; Mahmud, T; Rosengarten, G; Mitchell, A. Optofluidics: a Novel Generation of Reconfigurable and Adaptive Compact Architectures. Microfluid. Nanofluid?2008, 4, 81–95, doi:10.1007/s10404-007-0222-z.
Uhrig, K; Kurre, R; Schmitz, C; Curtis, JE; Haraszti, T; Clemen, AE; Spatz, JP. Optical Force Sensor Array in a Microfluidic Device based on Holographic Optical Tweezers. Lab Chip?2009, 9, 661–668, doi:10.1039/b817633g. 19224015
[183]
Zhang, H; Liu, KK. Optical Tweezers for Single Cells. J. R. Soc. Interface?2008, 5, 671–690, doi:10.1098/rsif.2008.0052. 18381254
[184]
Andersson, H; Berg, Avd. Microfabrication and Microfluidics for Tissue Engineering: State of the Art and Future Opportunities. Lab Chip?2004, 4, 98–103, doi:10.1039/b314469k. 15052347
[185]
Garcia-Alonso, J; Greenway, GM; Hardege, JD; Haswell, SJ. A Prototype Microfluidic Chip using Fluorescent Detection of Toxic Compounds. Biosens. Bioelectron?2009, 24, 1058–1511.
[186]
Vanapalli, SA; Duits, MHG; Mugele, F. Microfluidics as a functional tool for cell mechanics. Biomicrofluidics?2009, 3, 012006, doi:10.1063/1.3067820.