Surface plasmon resonance (SPR) biosensors utilize refractive index changes to sensitively detect mass changes at noble metal sensor surface interfaces. As such, they have been extensively applied to immunoassays of large molecules, where their high mass and use of sandwich immunoassay formats can result in excellent sensitivity. Small molecule immunosensing using SPR is more challenging. It requires antibodies or high-mass or noble metal labels to provide the required signal for ultrasensitive assays. Also, it can suffer from steric hindrance between the small antigen and large antibodies. However, new studies are increasingly meeting these and other challenges to offer highly sensitive small molecule immunosensor technologies through careful consideration of sensor interface design and signal enhancement. This review examines the application of SPR transduction technologies to small molecule immunoassays directed to different classes of small molecule antigens, including the steroid hormones, toxins, drugs and explosives residues. Also considered are the matrix effects resulting from measurement in chemically complex samples, the construction of stable sensor surfaces and the development of multiplexed assays capable of detecting several compounds at once. Assay design approaches are discussed and related to the sensitivities obtained.
Cooper, MA. Optical biosensors in drug discovery. Nat. Rev. Drug Discov?2002, 1, 515–528, doi:10.1038/nrd838. 12120258
[3]
Yuan, J; Oliver, R; Li, J; Lee, J; Aguilar, M; Wu, Y. Sensitivity enhancement of SPR assay of progesterone based on mixed self-assembled monolayers using nanogold particles. Biosens. Bioeletron?2007, 23, 144–148, doi:10.1016/j.bios.2007.03.025.
[4]
Mitchell, JS; Wu, Y; Cook, CJ; Main, L. Sensitivity enhancement of surface plasmon resonance biosensing of small molecules. Anal. Biochem?2005, 343, 125–135, doi:10.1016/j.ab.2005.05.001. 15950915
[5]
Chung, JW; Park, JM; Bernhardt, R; Pyun, JC. Immunosensor with a controlled orientation of antibodies by using NeutrAvidin-protein A complex at immunoaffinity layer. J. Biotechnol?2006, 126, 325–333, doi:10.1016/j.jbiotec.2006.05.010. 16842878
Mitchell, JS; Wu, Y; Cook, CJ; Main, L. Estrogen conjugation and antibody binding interactions in surface plasmon resonance biosensing. Steroids?2006, 71, 618–631, doi:10.1016/j.steroids.2006.03.004. 16704872
[8]
Mitchell, JS; Wu, Y. Surface plasmon resonance signal enhancement for immunoassay of small molecules. Methods Mol. Biol?2010, 627, 113–129. 20217617
[9]
Jiang, XQ; Waterland, M; Blackwell, L; Wu, Y; Jayasundera, KP; Partridge, A. Sensitive determination of estriol-16-glucuronide using surface plasmon resonance sensing. Steroids?2009, 74, 819–824. 19465041
[10]
Jiang, XQ; Waterland, M; Blackwell, L; Partridge, A. Determination of estriol-16-glucuronide in human urine with surface plasmon resonance and lateral flow immunoassays. Anal. Method?2010, 2, 368–374, doi:10.1039/c001532f.
Yuan, J; Deng, DW; Lauren, DR; Aguilar, MI; Wu, YQ. Surface plasmon resonance biosensor for the detection of ochratoxin A in cereals and beverages. Anal. Chim. Acta?2009, 656, 63–71, doi:10.1016/j.aca.2009.10.003. 19932816
[13]
Lyon, LA; Pena, DJ; Natan, MJ. Surface plasmon resonance of Au colloid-modified Au films: particle size dependence. J. Phys. Chem. B?1999, 103, 5826–5831, doi:10.1021/jp984739v.
[14]
Driskell, JD; Lipert, RJ; Porter, MD. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering. J. Phys. Chem. B?2006, 110, 17444–17451, doi:10.1021/jp0636930. 16942083
[15]
Wu, Y; Mitchell, J; Cook, C; Main, L. Evaluation of progesterone-ovalbumin conjugates with different length linkers in enzyme-linked immunosorbent assay and surface plasmon resonance-based immunoassay. Steroids?2002, 67, 565–572, doi:10.1016/S0039-128X(02)00010-7. 11996928
[16]
Fu, E; Nelson, KE; Ramsey, SA; Foley, JO; Helton, K; Yager, P. Modeling of a competitive microfluidic heterogeneous immunoassay: sensitivity of the assay response to varying system parameters. Anal. Chem?2009, 81, 3407–3413, doi:10.1021/ac802672v. 19361154
[17]
Foley, JO; Nelson, KE; Mashadi-Hossein, A; Finlayson, BA; Yager, P. Concentration gradient immunoassay. 2. Computational modeling for analysis and optimization. Anal. Chem?2007, 79, 3549–3553, doi:10.1021/ac062350v. 17437333
[18]
Nelson, KE; Foley, JO; Yager, P. Concentration gradient immunoassay. 1. An immunoassay based on interdiffusion and surface binding in a microchannel. Anal. Chem?2007, 79, 3542–3548, doi:10.1021/ac062349w. 17437332
[19]
Moreno-Bondi, MC; Taitt, CR; Shriver-Lake, LC; Ligler, FS. Multiplexed measurement of serum antibodies using an array biosensor. Biosens. Bioelectron?2006, 21, 1880–1886, doi:10.1016/j.bios.2005.12.018. 16434176
[20]
Phillips, KS; Wilkop, T; Wu, JJ; Al-Kaysi, RO; Cheng, Q. Surface Plasmon resonance imaging analysis of protein-receptor binding in supported membrane arrays on gold substrates with calcinated silicate films. J. Am. Chem. Soc?2006, 128, 9590–9591, doi:10.1021/ja0628102. 16866487
[21]
Kanoh, N; Kyo, M; Inamori, K; Ando, A; Asami, A; Nakao, A; Osada, H. SPR imaging of photo-cross-linked small-molecule arrays on gold. Anal. Chem?2006, 78, 2226–2230, doi:10.1021/ac051777j. 16579601
[22]
Savchenko, A; Kashuba, E; Kashuba, V; Snopok, B. Imaging technique for the screening of protein-protein interactions using scattered light under surface plasmon resonance conditions. Anal. Chem?2007, 79, 1349–1355, doi:10.1021/ac061456n. 17297933
[23]
Cash, KJ; Ricci, F; Plaxco, KW. A general electrochemical method for label-free screening of protein small molecule interactions. Chem. Commun?2009, 41, 6222–6224.
[24]
Kawazumi, H; Gobi, KV; Ogino, K; Maeda, H; Miura, N. Compact surface plasmon resonance (SPR) immunosensor using multichannel for simultaneous detection of small molecule compounds. Sens. Actuat. B-Chem?2005, 108, 791–796, doi:10.1016/j.snb.2004.11.069.
[25]
Wang, JL; Munir, A; Zhou, HS. Au NPs-aptamer conjugates as a powerful competitive reagent for ultrasensitive detection of small molecules by surface plasmon resonance spectroscopy. Talanta?2009, 79, 72–76, doi:10.1016/j.talanta.2009.03.003. 19376346
[26]
Wang, JL; Zhou, HS. Aptamer-based Au nanoparticles-enhanced surface plasmon resonance detection of small molecules. Anal. Chem?2008, 80, 7174–7178, doi:10.1021/ac801281c. 18707133
[27]
Gillis, EH; Traynor, I; Gosling, JP; Kane, M. Improvement to a surface plasmon resonance-based immunoassay for the steroid hormone progesterone. J. AOAC Int?2006, 89, 838–842. 16792083
[28]
Gillis, EH; Gosling, JP; Sreenan, JM; Kane, M. Development and validation of a biosensor-based immunoassay for progesterone in bovine milk. J. Immunol. Methods?2002, 267, 131–138, doi:10.1016/S0022-1759(02)00166-7. 12165434
Miyashita, M; Shimada, T; Miyagawa, H; Akamatsu, M. Surface plasmon resonance-based immunoassay for 17 beta-estradiol and its application to the measurement of estrogen receptor-binding activity. Anal. Bioanal. Chem?2005, 381, 667–673, doi:10.1007/s00216-004-2952-z. 15662513
[31]
Thaler, M; Metzger, J; Schreigg, A; Denk, B; Gleixner, A; Hauptmann, H; Luppa, P. B. Immunoassay for sex hormone-binding globulin in undiluted serum is influenced by high-molecular-mass aggregates. Clin. Chem?2005, 51, 401–407, doi:10.1373/clinchem.2004.034264. 15590752
[32]
Kaiser, T; Gudat, P; Stock, W; Pappert, G; Grol, M; Neumeier, D; Luppa, PB. Biotinylated steroid derivatives as ligands for biospecific interaction analysis with monoclonal antibodies using immunosensor devices. Anal. Biochem?2000, 282, 173–185, doi:10.1006/abio.2000.4596. 10873271
[33]
Mitchell, JS; Lowe, TE; Ingram, JR. Rapid ultrasensitive measurement of salivary cortisol using nano-linker chemistry coupled with surface plasmon resonance detection. Analyst?2009, 134, 380–386, doi:10.1039/b817083p. 19173066
[34]
Mitchell, JS; Lowe, TE. Ultrasensitive detection of testosterone using conjugate linker technology in a nanoparticle-enhanced surface plasmon resonance biosensor. Biosens. Bioelectron?2009, 24, 2177–2183, doi:10.1016/j.bios.2008.11.018. 19117747
[35]
Ellison, PT; Bribiescas, RG; Bently, GR; Campbell, BC; Lipson, SF; Panter-Brick, C; Hill, K. Population variation in age-related decline in male salivary testosterone. Hum. Reprod?2002, 17, 3251–3253, doi:10.1093/humrep/17.12.3251. 12456632
[36]
Helton, KL; Nelson, KE; Fu, E; Yager, P. Conditioning saliva for use in a microfluidic biosensor. Lab Chip?2008, 8, 1847–1851, doi:10.1039/b811150b. 18941684
[37]
Stevens, RC; Soelberg, SD; Near, S; Furlong, CE. Detection of cortisol in saliva with a flow-filtered, portable surface plasmon resonance biosensor system. Anal. Chem?2008, 80, 6747–6751, doi:10.1021/ac800892h. 18656950
[38]
Frasconi, M; Mazzarino, M; Botre, F; Mazzei, F. Surface plasmon resonance immunosensor for cortisol and cortisone determination. Anal. Bioanal. Chem?2009, 394, 2151–2159, doi:10.1007/s00216-009-2914-6. 19590858
Dillon, PP; Daly, SJ; Killard, AJ; O’Kennedy, R. Development and use of antibodies in surface plasmon resonance-based immunosensors for environmental monitoring. Int. J. Environ. An. Ch?2003, 83, 525–543, doi:10.1080/0306731031000114929.
[41]
Zhang, WW; Chen, YC; Luo, ZF; Wang, JY; Ma, DY. Analysis of 17 beta-estradiol from sewage in coastal marine environment by surface plasmon resonance technique. Chem. Res. Chin. U?2007, 23, 404–407, doi:10.1016/S1005-9040(07)60087-7.
[42]
Pattnaik, P; Srivastav, A. Surface plasmon resonance—applications in food science research: A review. J. Food Sci. Tech. Mys?2006, 43, 329–336.
[43]
Homola, J. Surface Plasmon resonance (SPR) biosensors and their applications in food safety and security. NATO Sci. Ser. II Math?2006, 216, 101–118.
[44]
Petz, M. Recent applications of surface plasmon resonance biosensors for analyzing residues and contaminants in food. Monatsh. Chem?2009, 140, 953–964, doi:10.1007/s00706-009-0142-6.
[45]
Meneely, JP; Sulyok, M; Baumgartner, S; Krska, R; Elliott, CT. A rapid optical immunoassay for the screening of T-2 and HT-2 toxin in cereals and maize-based baby food. Talanta?2010, 81, 630–636, doi:10.1016/j.talanta.2009.12.055. 20188974
[46]
Wang, XH; Wang, S. Sensors and biosensors for the determination of small molecule biological toxins. Sensors?2008, 8, 6045–6054, doi:10.3390/s8096045.
[47]
Hodnik, V; Anderluh, G. Toxin detection by surface plasmon resonance. Sensors?2009, 9, 1339–1354. 22573957
[48]
Raz, SR; Bremer, MGEG; Giesbers, M; Norde, W. Development of a biosensor microarray towards food screening, using imaging surface plasmon resonance. Biosens. Bioeletron?2008, 24, 552–557, doi:10.1016/j.bios.2008.05.010.
[49]
Pohanka, M; Jun, D; Kuca, K. Mycotoxin assays using biosensor technology: A review. Drug Chem. Toxicol?2007, 30, 253–261, doi:10.1080/01480540701375232. 17613010
[50]
Tudos, AJ; Lucas-van den Bos, ER; Stigter, ECA. Rapid surface plasmon resonance-based inhibition assay of deoxynivalenol. J. Agr. Food Chem?2003, 51, 5843–5848, doi:10.1021/jf030244d.
[51]
Fu, XH. Surface plasmon resonance immunoassay for ochratoxin A based on nanogold hollow balls with dendritic surface. Anal. Lett?2007, 40, 2641–2652, doi:10.1080/00032710701588366.
[52]
Medina, MB. A biosensor method for detection of Staphylococcal enterotoxin A in raw whole egg. J. Rapid Meth. Aut. Mic?2006, 14, 119–132, doi:10.1111/j.1745-4581.2006.00035.x.
[53]
Daly, SJ; Keating, GJ; Dillon, PP; Manning, BM; O’Kennedy, R; Lee, HA; Morgan, MRA. Development of surface plasmon resonance-based immunoassay for aflatoxin B-1. J. Agr. Food Chem?2000, 48, 5097–5104, doi:10.1021/jf9911693.
[54]
Cuccioloni, M; Mozzicafreddo, M; Barocci, S; Ciuti, F; Pecorelli, I; Eleuteri, AM; Spina, M; Fioretti, E; Angeletti, M. Biosensor-based screening method for the detection of aflatoxins B-1-G(1). Anal. Chem?2008, 80, 9250–9256, doi:10.1021/ac801612w. 19551989
[55]
Prieto-Simon, B; Miyachi, H; Karube, I; Saiki, H. High-sensitive flow-based kinetic exclusion assay for okadaic acid assessment in shellfish samples. Biosens. Bioelectron?2010, 25, 1395–1401, doi:10.1016/j.bios.2009.10.039. 19939663
[56]
Llamas, NM; Stewart, L; Fodey, T; Higgins, HC; Velasco, MLR; Botana, LM; Elliott, CT. Development of a novel immunobiosensor method for the rapid detection of okadaic acid contamination in shellfish extracts. Anal. Bioanal. Chem?2007, 389, 581–587, doi:10.1007/s00216-007-1444-3. 17646971
[57]
Stevens, RC; Soelberg, SD; Eberhart, BTL; Spencer, S; Wekell, JC; Chinowsky, TM; Trainer, VL; Furlong, CE. Detection of the toxin domoic acid from clam extracts using a portable surface plasmon resonance biosensor. Harmful Algae?2007, 6, 166–174, doi:10.1016/j.hal.2006.08.001.
[58]
Traynor, IM; Plumpton, L; Fodey, TL; Higgins, C; Elliott, CT. Immunobiosensor detection of domoic acid as a screening test in bivalve mollusks: comparison with liquid chromatography-based analysis. J. AOAC Int?2006, 89, 868–872. 16792088
[59]
Le Berre, M; Kane, M. Biosensor-based assay for domoic acid: comparison of performance using polyclonal, monoclonal, and recombinant antibodies. Anal. Lett?2006, 39, 1587–1598, doi:10.1080/00032710600713297.
[60]
Campbell, K; Huet, AC; Charlier, C; Higgins, C; Delahaut, p; Elliott, CT. Comparison of ELISA and SPR biosensor technology for the detection of paralytic shellfish poisoning toxins. J. Chromatogr. B?2009, 877, 4079–4089, doi:10.1016/j.jchromb.2009.10.023.
[61]
Campbell, K; Stewart, LD; Douchette, GJ; Fodey, TL; Haughey, SA; Vilarino, N; Kawatsu, k; Elliott, CT. Assessment of specific binding proteins suitable for the detection of paralytic shellfish poisons using optical biosensor technology. Anal. Chem?2007, 79, 5906–5914, doi:10.1021/ac070342o. 17580984
[62]
Tsumoto, K; Yokota, A; Tanaka, Y; Ui, M; Tsumuraya, T; Fujii, I; Kumagai, I; Nagumo, Y; Oguri, H; Inoue, M; Hirama, M. Critical contribution of aromatic rings to specific recognition of polyether rings – the case of ciguatoxin CTX3C-ABC and its specific antibody 1C49. J. Biol. Chem?2008, 283, 12259–12266, doi:10.1074/jbc.M710553200. 18326040
[63]
Oguri, H. Bioorganic studies utilizing rationally designed synthetic molecules: absolute configuration of ciguatoxin and development of immunoassay systems. B. Chem. Soc. Jpn?2007, 80, 1870–1883, doi:10.1246/bcsj.80.1870.
[64]
Taylor, AD; Ladd, J; Etheridge, S; Deeds, J; Hall, S; Jiang, SY. Quantitative detection of tetrodotoxin (TTX) by a surface plasmon resonance (SPR) sensor. Sens. Actuat.-B Chem?2008, 130, 120–128, doi:10.1016/j.snb.2007.07.136.
[65]
Kim, SJ; Gobi, KV; Iwasaka, H; Tanaka, H; Miura, N. Novel miniature SPR immunosensor equipped with all-in-one multi-microchannel sensor chip for detecting low-molecular-weight analytes. Biosens. Bioelectron?2007, 23, 701–707, doi:10.1016/j.bios.2007.08.010. 17890075
[66]
Kim, SJ; Gobi, KV; Tanaka, H; Shoyama, Y; Miura, N. Enhanced sensitivity of a surface-plasmon-resonance (SPR) sensor for 2,4-D by controlled functionalization of self-assembled monolayer-based immunosensor chip. Chem. Lett?2006, 35, 1132–1133, doi:10.1246/cl.2006.1132.
[67]
Nabok, AV; Tsargorodskaya, A; Holloway, A; Starodub, NF; Gojster, O. Registration of T-2 mycotoxin with total internal reflection ellipsometry and QCM impedance methods. Biosens. Bioelectron?2007, 22, 885–890, doi:10.1016/j.bios.2006.03.010. 16624545
[68]
Haughey, SA; O’Kane, AA; Baxter, CA; Kalman, A; Trisconi, MJ; Indyk, HE; Watene, GA. Determination of pantothenic acid in foods by optical biosensor immunoassay. J. AOAC Int?2005, 88, 1008–1014. 16152915
[69]
Kreuzer, MP; Quidant, R; Badenes, G; Marco, MP. Quantitative detection of doping substances by a localized surface plasmon sensor. Biosens. Bioelectron?2006, 21, 1345–1349, doi:10.1016/j.bios.2005.04.019. 15935632
[70]
Kreuzer, MP; Quidant, R; Salvador, JP; Marco, MP; Badenes, G. Colloidal-based localized surface plasmon resonance (LSPR) biosensor for the quantitative determination of stanozolol. Anal. Bioanal. Chem?2008, 391, 1813–1820, doi:10.1007/s00216-008-2022-z. 18373230
Klenkar, G; Liedberg, B. A microarray chip for label-free detection of narcotics. Anal. Bioanal. Chem?2008, 391, 1679–1688, doi:10.1007/s00216-008-1839-9. 18347782
[73]
Johansson, MA; Hellenas, KE. Matrix effects in immunobiosensor determination of clenbuterol in urine and serum. Analyst?2004, 129, 438–442, doi:10.1039/b316723b. 15116237
[74]
Dumont, V; Huet, AC; Traynor, I; Elliott, C; Delahaut, P. A surface plasmon resonance biosensor assay for the simultaneous determination of thiamphenicol, florefenicol, florefenicol amine and chloramphenicol residues in shrimps. Anal. Chim. Acta?2006, 567, 179–183, doi:10.1016/j.aca.2006.03.028.
[75]
Gaudin, V; Maris, P. Development of a biosensor-based immunoassay for screening of chloramphenicol residues in milk. Food Agr. Immunol?2001, 13, 77–86, doi:10.1080/09540100120055648.
[76]
Fitzpatrick, B; O’Kennedy, R. The development and application of a surface plasmon resonance-based inhibition immunoassay for the determination of warfarin in plasma ultrafiltrate. J. Immunol. Meth?2004, 291, 11–25, doi:10.1016/j.jim.2004.03.015.
[77]
Lofgren, JA; Dhandapuni, S; Pennucci, JJ; Abbott, CM; Mytych, DT; Kaliyaperumal, A; Swanson, SJ; Mullenix, MC. Comparing ELISA and surface plasmon resonance for assessing clinical immunogenicity of panitumumab. J. Immunol?2007, 178, 7467–7472, doi:10.4049/jimmunol.178.11.7467. 17513798
[78]
Moghaddam, A; Borgen, T; Stacy, J; Kausmally, L; Simonsen, B; Marvik, OJ; Brekke, OH; Braunagel, M. Identification of scFv antibody fragments that specifically recognize the heroin metabolite 6-monoacetylmorphine but not morphine. J. Immunol. Methods?2003, 280, 139–155, doi:10.1016/S0022-1759(03)00109-1. 12972195
[79]
Blasco, C; Torres, CM; Pico, Y. Progress in antibacterials analysis of residual in food. Trac-Trend Anal. Chem?2007, 26, 895–913, doi:10.1016/j.trac.2007.08.001.
[80]
Davis, F; Higson, SPJ. Label-free immunochemistry approach to detect and identify antibiotics in milk. Pediatr. Res?2010, 67, 476–480, doi:10.1203/PDR.0b013e3181d61c0c. 20118827
[81]
Gustavsson, E; Bjurling, P; Degelaen, J; Sternesjo, A. Analysis of beta-lactam antibiotics using a microbial receptor protein-based biosensor assay. Food Agric. Immunol?2002, 14, 121–131, doi:10.1080/09540100220145142.
[82]
Keegan, J; Whelan, M; Danaher, M; Crooks, S; Sayers, R; Anastasio, A; Elliott, C; Brandon, D; Furey, A; O’Kennedy, R. Benimidazole carbamate residues in milk: detection by surface plasmon resonance-biosensor, using a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method for extraction. Anal. Chim. Acta?2009, 654, 111–119, doi:10.1016/j.aca.2009.09.028. 19854341
[83]
Raz, SR; Bremer, MGEG; Haasnoot, W; Norde, W. Label-free and multiplex detection of antibiotic residues in milk using imaging surface plasmon resonance-based immunosensor. Anal. Chem?2009, 81, 7743–7749, doi:10.1021/ac901230v. 19685910
[84]
Huet, AC; Charlier, C; Weigel, S; Godefroy, SB; Delahaut, P. Validation of an optical surface plasmon resonance biosensor assay for screening (fluoro)quinolones in egg, fish and poultry. Food Addit. Contam. A?2009, 26, 1341–1347, doi:10.1080/02652030903013328.
[85]
Huet, AC; Charlier, C; Singh, G; Godefroy, SB; Leivo, J; Vehniaeinen, M; Nielen, MWF; Weigel, S; Delahaut, P. Development of an optical surface plasmon resonance biosensor assay for (fluoro) quinolones in egg, fish and poultry meat. Anal. Chim. Acta?2008, 623, 195–203, doi:10.1016/j.aca.2008.06.009. 18620924
[86]
Weigel, S; Pikkemaat, MG; Elferink, JWA; Mulder, PPJ; Huet, AC; Delahaut, P; Schittko, S; Flerus, R; Nielen, M. Comparison of a fluoroquinolone surface plasmon resonance biosensor screening assay with established methods. Food Addit. Contam. A?2009, 26, 441–452, doi:10.1080/02652030802595730.
[87]
Haasnoot, W; Gercek, H; Cazemier, G; Nielen, MWF. Biosensor immunoassay for flumequine in broiler serum and muscle. Anal. Chim. Acta?2007, 586, 312–318, doi:10.1016/j.aca.2006.10.003. 17386729
[88]
Marchesini, GR; Haasnoot, W; Delahaut, P; Gerseck, H; Nielen, MWF. Dual biosensor immunoassay-directed identification of fluoroquinolones in chicken muscle by liquid chromatography electrospray time-of-flight mass spectrometry. Anal. Chim. Acta?2007, 586, 259–268, doi:10.1016/j.aca.2006.11.013. 17386721
[89]
Gustavsson, E; Bjurling, P; Sternesjo, A. Biosensor analysis of penicillin G in milk based on the inhibition of carboxypeptidase activity. Anal. Chim. Acta?2002, 468, 153–159, doi:10.1016/S0003-2670(02)00599-8.
[90]
Dillon, P; Daly, S; Browne, J; Manning, B; O’Kennedy, R; van Amerongen, A. Development of surface plasmon resonance-based immunoassay for cephalexin. P-Soc. Photo-Opt. Ins?2003, 4876, 911–922.
[91]
Dillon, PP; Daly, SJ; Browne, JG; Manning, BM; Loomans, E; van Amerongen, A; O’Kennedy, R. Application of an immunosensor for the detection of the beta-lactam antibiotic, cephalexin. Food Agr. Immunol?2003, 15, 225–234, doi:10.1080/09540100400003246.
[92]
McCarney, B; Traynor, IM; Fodey, TL; Crooks, SRH; Elliott, CT. Surface plasmon resonance biosensor screening of poultry liver and eggs for nicarbazin residues. Anal. Chim. Acta?2003, 483, 165–169, doi:10.1016/S0003-2670(02)01470-8.
[93]
Situ, C; Crooks, SRH; Baxter, AG; Ferguson, J; Elliott, CT. On-line detection of sulfamethazine and sulfadiazine in porcine bile using a multi-channel high-throughput SPR biosensor. Anal. Chim. Acta?2002, 473, 143–149, doi:10.1016/S0003-2670(02)00934-0.
[94]
Crooks, SRH; Stenberg, E; Johansson, MA; Hellenas, KE; Elliott, CT. The use of optical biosensor for high-throughput detection of veterinary drug residues in foods. P. Soc. Photo.-Opt. Ins?2001, 4206, 123–130.
[95]
Akkoyun, A; Kohen, VF; Biltewski, U. Detection of sulphamethazine with an optical biosensor and anti-idiotypic antibodies. Sens. Actuat. B-Chem?2000, 70, 12–18, doi:10.1016/S0925-4005(00)00547-5.
[96]
Gaudin, V; Pavy, ML. Determination of sulfamethazine in milk by biosensor immunoassay. J. AOAC Int?1999, 82, 1316–1320. 10589482
[97]
Sternesjo, A; Mellgren, C; Bjorck, L. Determination of sulfamethazine residues in milk by a surface-plasmon resonance-based biosensor assay. Anal. Biochem?1995, 226, 175–181, doi:10.1006/abio.1995.1206. 7540367
[98]
Samsonova, JV; Baxter, GA; Grooks, SRH; Small, AE; Elliott, CT. Determination of ivermectin in bovine liver by optical immunobiosensor. Biosens. Bioelectron?2002, 17, 523–529, doi:10.1016/S0956-5663(02)00016-7. 11959474
[99]
Haasnoot, W; Loomans, EEMG; Cazemier, G; Dietrich, R; Verheijen, R; Bergwerff, AA; Stephany, RW. Direct versus competitive biosensor immunoassays for the detection of (dihydro)streptomycin residues in milk. Food Agr. Immunol?2002, 14, 15–27, doi:10.1080/09540100220137637.
[100]
Keating, GJ; Quinn, JG; O’Kennedy, R. Immunoassay for the determination of 7-hydroxycoumarin in serum using ‘real-time’ biosensor analysis. Anal. Lett?1999, 32, 2163–2176, doi:10.1080/00032719908542961.
[101]
Smith, RG; D’Souza, N; Nicklin, S. A review of biosensors and biologically-inspired systems for explosives detection. Analyst?2008, 133, 571–584, doi:10.1039/b717933m. 18427676
[102]
Shankaran, DR; Kawaguchi, DR; Kim, SJ; Matsumoto, K; Toko, K; Miura, N. Evaluation of the molecular recognition of monoclonal and polyclonal antibodies for sensitive detection of 2,4,6-trinitortoluene (TNT) by indirect competitive surface plasmon resonance immunoassay. Anal. Bioanal. Chem?2006, 386, 1313–1320, doi:10.1007/s00216-006-0699-4. 16900380
[103]
Singh, P; Onodera, T; Mizuta, Y; Matsumoto, K; Miura, N; Toko, K. Dendrimer modified biochip for detection of 2,4,6-trinitrotoluene on SPR immunosensor: fabrication and advantages. Sens. Actuat.-B Chem?2009, 137, 403–409, doi:10.1016/j.snb.2008.12.027.
[104]
Larsson, A; Angbrant, J; Ekeroth, J; Mansson, P; Liedberg, B. A novel biochip technology for detection of explosives—TNT: synthesis, characterization and application. Sens. Actuat.-B Chem?2006, 113, 730–748, doi:10.1016/j.snb.2005.07.025.
[105]
Bowen, J; Noe, LJ; Sullivan, BP; Morris, K; Martin, V; Donnelly, G. Gas-phase detection of trinitrotoluene utilizing a solid-phase antibody immobilized on a gold film by means of surface plasmon resonance spectroscopy. Appl. Spectrosc?2003, 57, 906–914, doi:10.1366/000370203322258850. 14661832
[106]
Riskin, M; Tel-Vered, R; Willner, I. Imprinted Au-nanoparticle composites for the ultrasensitive surface plasmon resonance detection of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Adv. Mater?2010, 22, 1387, doi:10.1002/adma.200903007. 20437488
[107]
Nagatomo, K; Kawaguchi, T; Miura, N; Toko, K; Matsumoto, K. Development of a sensitive surface plasmon resonance immunosensor for detection of 2,4-dinitrotoluene with a novel oligo(ethylene glycol)-based sensor surface. Talanta?2009, 79, 1142–1148, doi:10.1016/j.talanta.2009.02.018. 19615523