全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2010 

The Effects of the Location of Au Additives on Combustion-generated SnO2 Nanopowders for CO Gas Sensing

DOI: 10.3390/s100707002

Keywords: SnO2, gas sensor, additives, gold, combustion synthesis

Full-Text   Cite this paper   Add to My Lib

Abstract:

The current work presents the results of an experimental study of the effects of the location of gold additives on the performance of combustion-generated tin dioxide (SnO2) nanopowders in solid state gas sensors. The time response and sensor response to 500 ppm carbon monoxide is reported for a range of gold additive/SnO2 film architectures including the use of colloidal, sputtered, and combustion-generated Au additives. The opportunities afforded by combustion synthesis to affect the SnO2/additive morphology are demonstrated. The best sensor performance in terms of sensor response (S) and time response (t) was observed when the Au additives were restricted to the outermost layer of the gas-sensing film. Further improvement was observed in the sensor response and time response when the Au additives were dispersed throughout the outermost layer of the film, where S = 11.3 and t = 51 s, as opposed to Au localized at the surface, where S = 6.1 and t = 60 s.

References

[1]  Barsan, N; Schweizer-Berberich, M; G?pel, W. Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: A status report. Fresenius J. Anal. Chem?1999, 365, 287–304, doi:10.1007/s002160051490.
[2]  Chowdhuri, A; Gupta, V; Sreenivas, K. Enhanced catalytic activity of ultrathin CuO islands on SnO2 films for fast response H2S gas sensors. IEEE Sens. J?2003, 3, 680–686, doi:10.1109/JSEN.2003.820554.
[3]  Miller, TA; Bakrania, SD; Perez, C; Wooldridge, MS. Chapter 30: Nanostructured tin dioxide materials for gas sensor applications. In Functional Nanomaterials; Geckeler, KE, Rosenberg, E, Eds.; American Scientific Publishers: California, USA, 2006; pp. 453–476.
[4]  Elmi, I; Zampolli, S; Cozzani, E; Mancarella, F; Cardinali, GC. Development of ultra-low-power consumption MOX sensors with ppb-level VOC detection capabilities for emerging applications. Sensor. Actuator-B?2008, 135, 342–351, doi:10.1016/j.snb.2008.09.002.
[5]  Lee, JH. Gas sensors using hierarchical and hollow oxide nanostructures: Overview. Sensor. Actuator-B?2009, 140, 319–336, doi:10.1016/j.snb.2009.04.026.
[6]  Huang, J; Wan, Q. Gas sensors based on semiconducting metal oxide one-dimensional nanostructures. Sensors?2009, 9, 9903–9924, doi:10.3390/s91209903. 22303154
[7]  Cabot, A; Arbiol, J; Morante, JR; Weimar, U; Barsan, N; Gopel, W. Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol-gel nanocrystals for gas sensors. Sensor. Actuator-B?2000, 70, 87–100, doi:10.1016/S0925-4005(00)00565-7.
[8]  Nelli, P; Faglia, G; Sberveglieri, G; Cereda, E; Gabetta, G; Dieguez, A; Romano-Rodriguez, A; Morante, JR. The aging effect on SnO2 Au thinfilm sensors: Electrical and structural characterization. Thin Solid Films?2000, 371, 249–253, doi:10.1016/S0040-6090(00)01011-7.
[9]  Sung, JH; Lee, YS; Lim, JW; Hong, YH; Lee, DD. Sensing characteristics of tin dioxide/gold sensor prepared by co-precipitation method. Sensor. Actuator-A?2000, 66, 149–152, doi:10.1016/S0925-4005(00)00319-1.
[10]  Zampiceni, E; Faglia, G; Sberveglieri, G; Kaciulis, S; Pandolfi, L; Scavia, G. Thermal treatment stabilization processes in SnO2 thin films catalyzed with Au and Pt. IEEE Sensors J?2002, 2, 102–106, doi:10.1109/JSEN.2002.1000250.
[11]  Montmeat, P; Marchand, JC; Lalauze, R; Viricelle, JP; Tournier, G; Pijolat, C. Physico-chemical contribution of gold metallic particles to the action of oxygen on tin dioxide sensors. Sensor. Actuator-B?2003, 95, 83–89, doi:10.1016/S0925-4005(03)00410-6.
[12]  Choi, US; Sakai, G; Shimanoe, K; Yamazoe, N. Sensing properties of Au-loaded SnO2-Co3O4 composites to CO and H2. Sensor. Actuator-B?2005, 107, 397–401, doi:10.1016/j.snb.2004.10.033.
[13]  Ramgir, NS; Hwang, YK; Jhung, SH; Kim, HK; Hwang, JS; Mulla, IS; Chang, JS. CO sensor derived from mesostructured Au-doped SnO2 thin film. Appl. Surf. Sci?2006, 252, 4298–4305, doi:10.1016/j.apsusc.2005.07.015.
[14]  Qian, LH; Wang, K; Li, Y; Fang, HT; Lu, QH; Ma, XL. CO sensor based on Au-decorated SnO2 nanobelt. Mater. Chem. Phys?2006, 100, 82–84, doi:10.1016/j.matchemphys.2005.12.009.
[15]  Wang, S; Zhao, Y; Huang, J; Wang, Y; Kong, F; Wu, S; Zhang, S; Huang, W. Preparation and CO gas-sensing behavior of Au-doped SnO2 sensors. Vacuum?2006, 81, 394–397, doi:10.1016/j.vacuum.2006.05.004.
[16]  Bahrami, A; Khodadadi, A; Kazemeini, M; Mortazavi, Y. Enhanced CO sensitivity and selectivity of gold nanoparticles-doped SnO2 sensor in presence of propane and methane. Sensor. Actuator-B?2008, 133, 352–356, doi:10.1016/j.snb.2008.02.034.
[17]  Korotcenkov, G; Cho, BK; Gulina, L; Tolstoy, V. SnO2 thin films modified by the SnO2-Au nanocomposites: Response to reducing gases. Sensor. Actuator-B?2009, 141, 610–616, doi:10.1016/j.snb.2009.06.001.
[18]  Sberveglieri, G. Recent developments in semiconducting thin-film gas sensors. Sensor. Actuator-B?1995, 23, 103–109, doi:10.1016/0925-4005(94)01278-P.
[19]  Bakrania, SD; Wooldridge, MS. The effects of two thick film deposition methods on tin dioxide gas sensor performance. Sensors?2009, 9, 6835–6868, doi:10.3390/s90906835. 22423201
[20]  Bakrania, SD; Miller, TA; Perez, C; Wooldridge, MS. Combustion of multiphase reactants for the synthesis of nanocomposite materials. Combust. Flame?2007, 148, 76–87, doi:10.1016/j.combustflame.2006.08.008.
[21]  Bakrania, SD; Perez, C; Wooldridge, MS. Methane-assisted combustion synthesis of nanocomposite tin dioxide materials. Proc. Combust. Inst?2007, 31, 1797–1804, doi:10.1016/j.proci.2006.08.020.
[22]  Miller, TA; Bakrania, SD; Perez, C; Wooldridge, MS. A new method for direct preparation of tin dioxide nanocomposite materials. J. Mater. Res?2005, 20, 2977–2987, doi:10.1557/JMR.2005.0375.
[23]  Bakrania, SD; Rathore, GK; Wooldridge, MS. An investigation of the thermal decomposition of gold acetate. J. Therm. Anal. Calorim?2009, 95, 117–122, doi:10.1007/s10973-008-9173-1.
[24]  McFarland, AD; Haynes, CL; Mirkin, CA; Van Duyne, RP; Godwin, HA. Color my nanoworld. J. Chem. Educ?2004, 81, 544A, doi:10.1021/ed081p544A.
[25]  JCPDS. Powder Diffraction File. International center for diffraction data: Swarthmore, PA, USA, 1990.
[26]  Mizsei, J; Sipila, P; Lantto, V. Structural studies of sputtered noble metal catalysts on oxide surfaces. Sensor. Actuator-B?1998, 47, 139–144, doi:10.1016/S0925-4005(98)00015-X.
[27]  Sauvan, M; Pijolat, C. Selectivity improvement of SnO2 films by superficial metallic films. Sensor. Actuator-B?1999, 58, 295–301, doi:10.1016/S0925-4005(99)00147-1.
[28]  Shimizu, Y; Maekawa, T; Nakamura, Y; Egashira, M. Effects of gas diffusivity and reactivity on sensing properties of thick film SnO2-based sensors. Sensor. Actuator-B?1998, 46, 163–168, doi:10.1016/S0925-4005(97)00247-5.
[29]  Cabot, A; Dieguez, A; Romano-Rodr?guez, A; Morante, JR; Barsan, N. Influence of the catalytic introduction procedure on the nano-SnO2 gas sensor performances: Where and how stay the catalytic atoms? Sensor. Actuator-B?2001, 79, 98–106, doi:10.1016/S0925-4005(01)00854-1.
[30]  Oh, HS; Yang, JH; Costello, CK; Wang, YM; Bare, SR; Kung, HH; Kung, MCJ. Selective catalytic oxidation of CO: Effect of chloride on supported Au catalysts. J. Catal?2002, 210, 375–386, doi:10.1006/jcat.2002.3710.
[31]  Mandayo, GG; Casta?o, E; Gracia, FJ; Cirera, A; Cornet, A; Morante, JR. Strategies to enhance the carbon monoxide sensitivity of tin oxide thin films. Sensor. Actuator-B?2003, 95, 90–96, doi:10.1016/S0925-4005(03)00413-1.
[32]  Licznerski, BW; Nitsch, K; Teterycz, H; Sobanski, T; Wisniewski, K. Characterization of electrical parameters for multilayer SnO2 gas sensors. Sensor. Actuator-B?2004, 103, 69–75, doi:10.1016/j.snb.2004.04.037.
[33]  Haruta, M. Nanoparticulate gold catalysts for low temperature CO oxidation. J. New Mater. Electrochem. Syst?2004, 7, 163–172.
[34]  Sahm, T; Rong, W; Barsan, N; Madler, L; Weimar, U. Sensing of CH4, CO and ethanol with in situ nanoparticle aerosol-fabricated multilayer sensors. Sensor. Actuator-B?2007, 127, 63–68, doi:10.1016/j.snb.2007.07.001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133