This paper describes the development of a modified Kalman filter to integrate a multi-camera vision system and strapdown inertial navigation system (SDINS) for tracking a hand-held moving device for slow or nearly static applications over extended periods of time. In this algorithm, the magnitude of the changes in position and velocity are estimated and then added to the previous estimation of the position and velocity, respectively. The experimental results of the hybrid vision/SDINS design show that the position error of the tool tip in all directions is about one millimeter RMS. The proposed Kalman filter removes the effect of the gravitational force in the state-space model. As a result, the resulting error is eliminated and the resulting position is smoother and ripple-free.
References
[1]
Farrell, J.; Barth, M. Global Positioning System and Inertial Navigation; McGraw-Hill: New York, NY, USA, 1999; p. 145.
[2]
Grewal, M.; Weill, L.R.; Andrews, A.P. Global Positioning Systems, Inertial Navigation, and Integration, 2nd ed ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007.
[3]
Foxlin, E.; Naimark, L. VIS-Tracker: A Wearable Vision-Inertial Self-Tracker. Proceedings of IEEE Virtual Reality Conference, Los Angeles, CA, USA, March 2003; pp. 199–206.
[4]
Parnian, N.; Golnaraghi, F. Integration of Vision and Inertial Sensors for Industrial Tools Tracking. Sens. Rev?2007, 27, 132–141, doi:10.1108/02602280710731696.
[5]
Parnian, N.; Golnaraghi, F. A low-Cost Hybrid SDINS/Multi-Camera Vision System for a Hand-Held Tool Positioning. Proceedings of 2008 IEEE/ION Position, Location and Navigation Symposium, Monterey, CA, USA, May 6–8, 2008; pp. 489–496.
[6]
Ernest, P.; Mazl, R.; Preucil, L. Train Locator Using Inertial Sensors and Odometer. Proceedings of IEEE Intelligent Vehicles Symposium, Parma, Italy, June 2004; pp. 860–865.
[7]
Pingyuan, C.; Tianlai, X. Data Fusion Algorithm for INS/GPS/Odometer Integrated Navigation. Proceedings of IEEE Conference on Industrial Electronics and Applications, Harbin, China, May 2007; pp. 1893–1897.
[8]
Abuhadrous, I.; Nashashibi, F.; Laurgeau, C. 3D Land Vehicle Localization: A Real-time Multi-Sensor Data Fusion Approach using RTMAPS. Proceedings of the 11th International Conference on Advanced Robotics, Coimbra, Portugal, June 30–July 3, 2003; pp. 71–76.
[9]
Bian, H.; Jin, Z.; Tian, W. Study on GPS Attitude Determination System Aided INS Using Adaptive Kalman Filter. Meas. Sci. Technol?2005, 16, 2072–2079, doi:10.1088/0957-0233/16/10/024.
[10]
Hu, C.; Chen, W.; Chen, Y.; Liu, D. Adaptive Kalman Filtering for Vehicle Navigation. J. Global Position Syst?2003, 2, 42–47, doi:10.5081/jgps.2.1.42.
[11]
Crassidis, J.L.; Lightsey, E.G.; Markley, F.L. Efficient and Optimal Attitude Determination Using Recursive Global Positioning System Signal Operations. J. Guid. Control Dyn?1999, 22, 193–201, doi:10.2514/2.4373.
[12]
Crassidis, J.L.; Markley, F.L. New Algorithm for Attitude Determination Using Global Positioning System Signals. J. Guid. Control Dyn?1997, 20, 891–896, doi:10.2514/2.4162.
[13]
Kumar, N.V. Integration of Inertial Navigation System and Global Positioning System Using Kalman Filtering. PhD. Thesis, Indian Institute of Technology, New Delhi, Delhi, India, 2004.
[14]
Lee, T.G. Centralized Kalman Filter with Adaptive Measurement Fusion: it’s Application to a GPS/SDINS Integration System with an Additional Sensor. Int. J. Control Autom. Syst?2003, 1, 444–452.
[15]
Pittelkau, M.E. An Analysis of Quaternion Attitude Determination Filter. J. Astron. Sci?2003, 51, 103–120.
[16]
Markley, F.L. Attitude Error Representation for Kalman Filtering. J. Guid. Control Dyn?2003, 26, 311–317, doi:10.2514/2.5048.
[17]
Markley, F.L. Multiplicative vs. Additive Filtering for Spacecraft Attitude Determination. Proceedings of the 6th Conference on Dynamics and Control of Systems and Structures in Space (DCSSS), Riomaggiore, Italy, July 2004.
[18]
Crassidis, J.L.; Markley, F.L. Unscented Filtering for Spacecraft Attitude Estimation. J. Guid. Control Dyn?2003, 26, 536–542, doi:10.2514/2.5102.
[19]
Grewal, M.S.; Henderson, V.D.; Miyasako, R.S. Application of Kalman Filtering to the Calibration and Alignment of Inertial Navigation Systems. IEEE Trans. Autom. Control?1991, 39, 4–13.
[20]
Lai, K.L.; Crassidis, J.L.; Harman, R.R. In-Space Spacecraft Alignment Calibration Using the Unscented Filter. Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin, TX, USA, August 2003; pp. 1–11.
[21]
Pittelkau, M.E. Kalman Filtering for Spacecraft System Alignment Calibration. J. Guid. Control. Dynam?2001, 24, 1187–1195, doi:10.2514/2.4834.
[22]
Merwe, R.V.; Wan, E.A. Sigma-Point Kalman Filters for Integrated Navigation. Proceedings of the 60th Annual Meeting of the Institute of Navigation, Dayton, OH, USA, June 2004.
[23]
Chung, H.; Ojeda, L.; Borenstein, J. Sensor fusion for Mobile Robot Dead-reckoning with a Precision-calibrated Fibre Optic Gyroscope. Proceedings of IEEE International Conference on Robotics and Automation, Seoul, Korea, May 2001; pp. 3588–3593.
[24]
Chung, H.; Ojeda, L.; Borenstein, J. Accurate Mobile Robot Dead-reckoning with a Precision-Calibrated Fibre Optic Gyroscope. IEEE Trans. Rob. Autom?2004, 17, 80–84.
[25]
Roumeliotis, S.I.; Sukhatme, G.S.; Bekey, G.A. Circumventing Dynamic Modeling: Evaluation Of The Error-State Kalman Filter Applied To Mobile Robot Localization. Proceedings of IEEE International Conference on Robotics and Automation, Detroit, MI, USA, May 1999; pp. 1656–1663.
[26]
Friedland, B. Analysis Strapdown navigation Using Quaternions. IEEE Trans. Aerosp. Electron. Syst?1974, AES-14, 764–767.
[27]
Tao, T.; Hu, H.; Zhou, H. Integration of Vision and Inertial Sensors for 3D Arm Motion Tracking in Home-based Rehabilitation. Int. J. Robot. Res?2007, 26, 607–624, doi:10.1177/0278364907079278.
[28]
Ang, W.T. Active Tremor Compensation in Handheld Instrument for Microsurgery. PhD Thesis, technology report CMU-RI-TR-04-28, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA, May, 2004.
Pandiyan, J.; Umapathy, M.; Balachandar, S.; Arumugam, A.; Ramasamy, S.; Gajjar, N.C. Design of Industrial Vibration Transmitter Using MEMS Accelerometer. Instit. Phys. Conf. Ser?2006, 34, 442–447, doi:10.1088/1742-6596/34/1/072.
[31]
Huster, A.; Rock, S.M. Relative Position Sensing by Fusing Monocular Vision and Inertial Rate Sensors. Proceedings of IEEE International Conference on Advanced Robotics, Coimbra, Portugal, June 30–July 3, 2003; pp. 1562–1567.
Treiber, M. Dynamic Capture of Human Arm Motion Using Inertial Sensors and Kinematical Equations. Master Thesis, University of Waterloo, Ontario, Canada, 2004.
[34]
Titterton, D.H.; Weston, J.L. Strapdown Inertial Navigation Technology, 2nd ed ed.; The institution of Electrical Engineers: Herts, UK, 2004.
[35]
Hibbeler, R.C. Enginnering Mechanics: Statics and Dynamics, 8th ed ed.; Prentice-Hall: Bergen County, NJ, USA, 1998.
[36]
Angular Acceleration of the Earth. Available online: http://jason.kamin.com/projects_files/equations.html/ (accessed on 21 January 2010).
[37]
Angular Speed of the Earth. Available online: http://hypertextbook.com/facts/2002/Jason/Atkins.shtml/ (accessed on 21 January 2010).
[38]
Forsyth, D.A.; Ponce, J. Computer Vision: A Modern Approach; Prentice-Hall: Upper Saddle River, NJ, USA, 2003.
[39]
Yoneyama, S.; Kikuta, H.; Kitagawa, A.; Kitamura, K. Lens Distortion Correction for Digital Image Correlation by Measuring Rigid Body Displacement. Opt. Eng?2006, 42, 1–9.
[40]
Brown, D.C. Close-Range Camera Calibration. Photogram. Eng?1971, 37, 855–866.
[41]
Tsai, R.Y. A Versatile Camera Calibration Technique for High Accuracy 3D Machine Vision Metrology Using Off-the-shelf TV Cameras and Lenses. IEEE J. Rob. Autom?1987, RA-3, 323–344.
[42]
Heikkila, J. Accurate Camera Calibration and Feature-based 3-D Reconstruction from Monocular Image Sequences. Dissertation, University of Oulu, Oulun yliopisto, Finland, 1997.
[43]
Grewal, M.S.; Andrews, A.P. Kalman Filtering: Theory and Practice Using MATLAB, 2nd ed ed.; John Wiley: New York, NY, USA, 2001.
[44]
Zarchan, P.; Musoff, H. Fundamentals of Kalman Filtering: A Practical Approach, 2nd ed ed.; AIAA: Alexandria, VA, USA, 2005.
[45]
MicroStrain: Orientation Sensors—Wireless Sensors. Available online: http://www./microstrain./com/ (accessed on 21 January 2010).