In this study, the ability of the Capillary-attached conductive gas sensor (CGS) in real-time gas identification was investigated. The structure of the prototype fabricated CGS is presented. Portions were selected from the beginning of the CGS transient response including the first 11 samples to the first 100 samples. Different feature extraction and classification methods were applied on the selected portions. Validation of methods was evaluated to study the ability of an early portion of the CGS transient response in target gas (TG) identification. Experimental results proved that applying extracted features from an early part of the CGS transient response along with a classifier can distinguish short-chain alcohols from each other perfectly. Decreasing time of exposition in the interaction between target gas and sensing element improved the reliability of the sensor. Classification rate was also improved and time of identification was decreased. Moreover, the results indicated the optimum interval of the early transient response of the CGS for selecting portions to achieve the best classification rates.
References
[1]
Nanto, H.; Stetter, J.R. Introduction to chemosensors. In Handbook of Machine Olfaction: Electronic Nose Technology; Pearce, T.C., Schiffman, S.S., Nagle, H.T., Gardner, J.W., Eds.; Wiley-VCH: Weinheim, Germany, 2002.
[2]
Arshak, K.; Moore, E.; Lyons, G.M.; Harris, J.; Clifford, S. A review of gas sensors employed in electronic nose applications. Sens. Rev?2004, 24, 181–198, doi:10.1108/02602280410525977.
[3]
Nakata, S.; Ojima, N. Detection of a sample gas in the presence of an interferant gas based on a nonlinear dynamic response. Sens. Actuat. B?1999, 56, 79–84, doi:10.1016/S0925-4005(99)00068-4.
[4]
Nakata, S.; Akakabe, S.; Nakasuji, M.; Yoshikawa, K. Gas sensing based on a nonlinear response: Discrimination between hydrocarbons and quantification of individual components in a gas mixture. Anal. Chem?1996, 68, 2067–2072, doi:10.1021/ac9510954. 21619295
[5]
Fort, A.; MacHetti, N.; Rocchi, S.; Serrano, B.; Tondi, L.; Ulivieri, N.; Vignoli, V.; Sberveglieri, G. Tin oxide gas sensing: Comparison among different measurement techniques for gas mixture classification. IEEE Trans. Instrum. Meas?2003, 52, 921–926, doi:10.1109/TIM.2003.814362.
[6]
Schweizer-Berberich, M.; Zheng, J.G.; Weimar, U.; G?pel, W.; Barsan, N.; Pentia, E.; Tomescu, A. The effect of Pt and Pd surface doping on the response of nanocrystalline tin dioxide gas sensors to CO. Sens. Actuat. B?1996, 31, 71–75, doi:10.1016/0925-4005(96)80018-9.
[7]
Williams, E.W.; Keeling, A.G. Thick film tin oxide sensors for detecting carbon monoxide at room temperature. J. Mater. Sci.: Mater. Electron?1998, 9, 51–54, doi:10.1023/A:1008884600516.
[8]
Kim, D.H.; Lee, S.H.; Kim, K.H. Comparison of CO-gas sensing characteristics between mono- and multi-layer Pt/SnO2 thin films. Sens. Actuat. B?2001, 77, 427–431, doi:10.1016/S0925-4005(01)00749-3.
[9]
Sauvan, M.; Pijolat, C. Selectivity improvement of SnO2 films by superficial metallic films. Sens. Actuat. B?1999, 58, 295–301, doi:10.1016/S0925-4005(99)00147-1.
[10]
Tamaekong, N.; Liewhiran, C.; Wisitsoraat, A.; Phanichphant, S. Sensing Characteristics of Flame-Spray-Made Pt/ZnO Thick Films as H2 Gas Sensor. Sensors?2009, 9, 6652–6669, doi:10.3390/s90906652. 22399971
[11]
Safonova, O.V.; Delabouglise, G.; Chenevier, B.; Gaskov, A.M.; Labeau, M. CO and NO2 gas sensitivity of nanocrystalline tin dioxide thin films doped with Pd, Ru and Rh. Mater. Sci. Eng. C?2002, 21, 105–111, doi:10.1016/S0928-4931(02)00068-1.
[12]
Safonova, O.V.; Rumyantseva, M.N.; Ryabova, L.I.; Labeau, M.; Delabouglise, G.; Gaskov, A.M. Effect of combined Pd and Cu doping on microstructure, electrical and gas sensor properties of nanocrystalline tin dioxide. Mater. Sci. Eng. B?2001, 85, 43–49, doi:10.1016/S0921-5107(01)00640-7.
[13]
Zhang, G.; Liu, M. Effect of particle size and dopant on properties of SnO2-based gas sensors. Sens. Actuat. B?2000, 69, 144–152, doi:10.1016/S0925-4005(00)00528-1.
[14]
Pagnier, T.; Boulova, M.; Galerie, A.; Gaskov, A.; Lucazeau, G. Reactivity of SnO2-CuO nanocrystalline materials with H2S: A coupled electrical and Raman spectroscopic study. Sens. Actuat. B?2000, 71, 134–139, doi:10.1016/S0925-4005(00)00598-0.
[15]
Fukui, K.; Katsuki, A. Improvement of humidity dependence in gas sensor based on SnO2. Sens. Actuat. B?2000, 65, 316–318, doi:10.1016/S0925-4005(99)00417-7.
Ivanovskaya, M.; Bogdanov, P.; Faglia, G.; Nelli, P.; Sberveglieri, G.; Taroni, A. On the role of catalytic additives in gas-sensitivity of SnO2-Mo based thin film sensors. Sens. Actuat. B?2001, 77, 268–274, doi:10.1016/S0925-4005(01)00709-2.
[18]
Han, C.-H.; Han, S.-D.; Khatkar, S. Enhancement of H2-sensing properties of F-doped SnO2 sensorby surface modification with SiO2. Sensors?2006, 6, 492–502, doi:10.3390/s6050492.
[19]
Kim, I.; Han, S.; Han, C.; Gwak, J.; Lee, H.; Wang, J. Micro semiconductor CO sensors based on indium-doped tin dioxide nanocrystalline powders. Sensors?2006, 6, 526–535, doi:10.3390/s6050526.
[20]
Kwon, C.H.; Yun, D.H.; Hong, H.K.; Kim, S.R.; Lee, K.; Lim, H.Y.; Yoon, K.H. Multi-layered thick-film gas sensor array for selective sensing by catalytic filtering technology. Sens. Actuat. B?2000, 65, 327–330, doi:10.1016/S0925-4005(99)00426-8.
[21]
Hossein-Babaei, F.; Orvatinia, M. Analysis of thickness dependence of the sensitivity in thin film resistive gas sensors. Sens. Actuat. B?2003, 89, 256–261, doi:10.1016/S0925-4005(02)00472-0.
[22]
Batzill, M. Surface science studies of gas sensing materials: SnO2. Sens. J?2006, 6, 1345–1366, doi:10.3390/s6101345.
[23]
Sakai, G.; Matsunaga, N.; Shimanoe, K.; Yamazoe, N. Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor. Sens. Actuat. B?2001, 80, 125–131, doi:10.1016/S0925-4005(01)00890-5.
[24]
Hossein-Babaei, F.; Hosseini-Golgoo, S.M.; Amini, A. Extracting discriminative information from the Padé-Z-transformed responses of a temperature-modulated chemoresistive sensor for gas recognition. Sens. Actuat. B?2009, 142, 19–27, doi:10.1016/j.snb.2009.07.039.
[25]
Vergara, A.; Martinelli, E.; Llobet, E.; Giannini, F.; D'Amico, A.; Di Natale, C. An alternative global feature extraction of temperature modulated micro-hotplate gas sensors array using an energy vector approach. Sens. Actuat. B?2007, 124, 352–359, doi:10.1016/j.snb.2006.12.050.
[26]
Vergara, A.; Llobet, E.; Brezmes, J.; Ivanov, P.; Cané, C.; Gràcia, I.; Vilanova, X.; Correig, X. Quantitative gas mixture analysis using temperature-modulated micro-hotplate gas sensors: Selection and validation of the optimal modulating frequencies. Sens. Actuat. B?2007, 123, 1002–1016, doi:10.1016/j.snb.2006.11.010.
[27]
Ding, H.; Ge, H.; Liu, J. High performance of gas identification by wavelet transform-based fast feature extraction from temperature modulated semiconductor gas sensors. Sens. Actuat. B?2005, 107, 749–755, doi:10.1016/j.snb.2004.12.009.
[28]
Sysoev, V.; Kiselev, I.; Frietsch, M.; Goschnick, J. Temperature gradient effect on gas discrimination power of a metal-oxide thin-film sensor microarray. Sensors?2004, 4, 37–46, doi:10.3390/s40400037.
[29]
Hossein-Babaei, F.; Hosseini-Golgoo, S.M. Analyzing the responses of a thermally modulated gas sensor using a linear system identification technique for gas diagnosis. IEEE Sens. J?2008, 8, 1837–1847, doi:10.1109/JSEN.2008.2006260.
[30]
Gutierrez-Osuna, R.; Gutierrez-Galvez, A.; Powar, N. Transient response analysis for temperature-modulated chemoresistors. Sens. Actuat. B?2003, 93, 57–66, doi:10.1016/S0925-4005(03)00248-X.
[31]
Gutierrez-Osuna, R.; Nagle, H.T. A method for evaluating data-preprocessing techniques for odor classification with an array of gas sensors. IEEE Trans. Syst. Man Cybern. B?1999, 29, 626–632, doi:10.1109/3477.790446.
[32]
Kermani, B.G.; Schiffman, S.S.; Troy Nagle, H. Using neural networks and genetic algorithms to enhance performance in an electronic nose. IEEE Trans. Biomed. Eng?1999, 46, 429–439, doi:10.1109/10.752940. 10217881
[33]
Phaisangittisagul, E.; Nagle, H.T. Enhancing multiple classifier system performance for machine olfaction using odor-type signatures. Sens. Actuat. B?2007, 125, 246–253, doi:10.1016/j.snb.2007.02.011.
[34]
Phaisangittisagul, E.; Nagle, H.T. Sensor selection for machine olfaction based on transient feature extraction. IEEE Trans. Insrum. Meas?2008, 57, 369–378, doi:10.1109/TIM.2007.910117.
[35]
Hossein-Babaei, F.; Orvatinia, M. Gas diagnosis based on selective diffusion retardation in an air filled capillary. Sens. Actuat. B?2003, 96, 298–303, doi:10.1016/S0925-4005(03)00546-X.
[36]
Hossein-Babaei, F.; Hemmati, M.; Dehmobed, M. Gas diagnosis by a quantitative assessment of the transient response of a capillary-attached gas sensor. Sens. Actuat. B?2005, 107, 461–467, doi:10.1016/j.snb.2004.11.003.
[37]
Bahraminejad, B.; Basri, S.; Hambali, Z.; Isa, M. Single selective gas sensor for detecting flammable gases. IEICE Electron. Express?2009, 6, 876–882, doi:10.1587/elex.6.876.
[38]
Gutierrez-Osuna, R. Pattern analysis for machine olfaction: A review. IEEE Sens. J?2002, 2, 189–202, doi:10.1109/JSEN.2002.800688.
[39]
Bahraminejad, B.; Basri, S.; Hambali, Z.; Isa, M. Evaluation of dimension effects on capillary-attached gas sensor. Meas. Sci. Technol.?2010, 21, 065202:1–065202:7.
[40]
Lee, S.W.; Tsai, P.P.; Chen, H. Comparison study of SnO2 thin- and thick-film gas sensors. Sens. Actuat. B?2000, 67, 122–127, doi:10.1016/S0925-4005(00)00390-7.
[41]
El Khakani, M.A.; Dolbec, R.; Serventi, A.M.; Horrillo, M.C.; Trudeau, M.; Saint-Jacques, R.G.; Rickerby, D.G.; Sayago, I. Pulsed laser deposition of nanostructured tin oxide films for gas sensing applications. Sens. Actuat. B?2001, 77, 383–388, doi:10.1016/S0925-4005(01)00758-4.
[42]
Gutierrez-Osuna, R.; Nagle, H.T.; Kermani, B.; Schiffman, S.S. Signal conditioning and pre-processing. In Handbook of Machine Olfaction: Electronic Nose Technology; Pearce, T.C., Schiffman, S.S., Nagle, H.T., Gardner, J.W., Eds.; Wiley-VCH: Weinheim, Germany, 2002; pp. 105–132.
[43]
Hines, E.L.; Boilot, P.; Gardner, J.W.; Gongora, M.A. Pattern Analysis for Electronic Noses. In Handbook of Machine Olfaction: Electronic Nose Technology; Pearce, T.C., Schiffman, S.S., Nagle, H.T., Gardner, J.W., Eds.; Wiley-VCH: Weinheim, Germany, 2002; pp. 133–160.
[44]
Distante, C.; Leo, M.; Siciliano, P.; Persaud, K.C. On the study of feature extraction methods for an electronic nose. Sens. Actuat. B?2002, 87, 274–288, doi:10.1016/S0925-4005(02)00247-2.
[45]
Pardo, M.; Sberveglieri, G. Comparing the performance of different features in sensor arrays. Sens. Actuat. B?2007, 123, 437–443, doi:10.1016/j.snb.2006.09.041.
[46]
Bellman, R.E. Adaptive Control Processes: A Guided Tour; Princeton University Press: Princeton, NJ, USA, 1961.
[47]
Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University: New York, NY, USA, 1995.
[48]
Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification, 2nd ed ed.; Wiley: New York, NY, USA, 2000.
[49]
Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: New York, NY, USA, 2001.
[50]
Pardo, M.; Sberveglieri, G. Classification of electronic nose data with support vector machines. Sens. Actuat. B?2005, 107, 730–737, doi:10.1016/j.snb.2004.12.005.
[51]
Brudzewski, K.; Osowski, S.; Markiewicz, T. Classification of milk by means of an electronic nose and SVM neural network. Sens. Actuat. B?2004, 98, 291–298, doi:10.1016/j.snb.2003.10.028.
[52]
Distante, C.; Ancona, N.; Siciliano, P. Support vector machines for olfactory signals recognition. Sens. Actuat. B?2003, 88, 30–39, doi:10.1016/S0925-4005(02)00306-4.
[53]
Demuth, H.; Beale, M. Neural Network Toolbox User’S Guide: For Use with Matlab, Version 4; MathWorks: Natick, MA, USA, 2004.
[54]
Liang, X.; Xiaodong, W. Gas quantitative analysis with support vector machine. Proceedings of Control and Decision Conference, Guilin, China, June 17–19, 2009; pp. 5148–5151.
[55]
Jain, A.K.; Duin, R.P.W.; Mao, J. Statistical pattern recognition: A review. IEEE Trans. Patt. Anal. Mach. Intell?2000, 22, 4–37, doi:10.1109/34.824819.