A novel noise filtering algorithm based on ensemble empirical mode decomposition (EEMD) is proposed to remove artifacts in electrocardiogram (ECG) traces. Three noise patterns with different power—50 Hz, EMG, and base line wander – were embedded into simulated and real ECG signals. Traditional IIR filter, Wiener filter, empirical mode decomposition (EMD) and EEMD were used to compare filtering performance. Mean square error between clean and filtered ECGs was used as filtering performance indexes. Results showed that high noise reduction is the major advantage of the EEMD based filter, especially on arrhythmia ECGs.
References
[1]
Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. Lond?1998, 454, 903–995.
[2]
Flandrin, P.; Rilling, G.; Goncalves, P. Empirical mode decomposition as a filter bank. IEEE Signal Process. Lett?2004, 11, 112–114.
[3]
Li, D.; Liang, Z.; Voss, L.J.; Sleigh, J.W. Analysis of depth of anesthesia with Hilbert-Huang spectral entropy. Clin. Neurophysiol?2008, 119, 2465–2475.
[4]
Salisbury, J.I.; Sun, Y. Rapid screening test for sleep apnea using a nonlinear and nonstationary signal processing technique. Med. Eng. Phys?2007, 29, 336–343.
[5]
Balocchi, R.; Menicucci, D.; Santarcangelo, E.; Sebastiani, L.; Gemigani, A.; Ghelarducci, B.; Varanini, M. Deriving the respiratory sinus arrhythmia from the heartbeat time series using empirical mode decomposition. Chaos Solitons Fractals?2004, 20, 171–177.
[6]
Weng, B.; Blanco-Velasco, M.; Barner, K.E. ECG Denoising based on the Empirical Mode Decomposition. Conf. Proc. IEEE. Eng. Med. Biol. Soc?2006, 1, 1–4.
[7]
Lu, Y.; Yan, J.Y.; Yam, Y. Model-based ECG Denoising Using Empirical Mode Decomposition. Conf. Proc. IEEE BIBM?2009, 2009, 191–196.
[8]
Pan, N.; I, V. M.; Un, M.P.; Hang, P.S. Accurate Removal of Baseline Wander in ECG Using Empirical Mode Decomposition. Conf. Proc. NFSI ICFBI?2007, 2007, 177–180.
[9]
Li, N.Q.; Li, P. An Improved Algorithm Based on EMD-Wavelet for ECG Signal De-noising. Proceedings of International Joint Conference on Computational Sciences and Optimization 2009, Sanya, Hainan, China, 24–26 April 2009; 1.
[10]
Blanco-Velasco, M.; Weng, B.; Barner, K.E. ECG signal denoising and baseline wander correction based on the empirical mode decomposition. Comput. Biol. Med?2008, 38, 1–13.
[11]
Nimunkar, A.J.; Tompkins, W.J. EMD-based 60-Hz noise filtering of the ECG. Conf. Proc. IEEE Eng. Med. Biol. Soc?2007, 2007, 1904–1907.
[12]
Wu, Z.; Huang, N.E. A study of the characteristics of white noise using the empirical mode decomposition method. Proc. Roy. Soc. London. A?2004, 460, 1597–1611.
[13]
Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data. Anal?2009, 1, 1–41.
[14]
Chen, L.; Li, X.; Li, X.B.; Huang, Z.Y. Signal extraction using ensemble empirical mode decomposition and sparsity in pipeline magnetic flux leakage nondestructive evaluation. Rev. Sci. Instrum?2009, 80, 025105.
[15]
Abdulhay, E.; Gumery, P.Y.; Fontecave, J.; Baconnier, P. Cardiogenic oscillations extraction in inductive plethysmography: Ensemble empirical mode decomposition. Conf. Proc. IEEE Eng. Med. Biol. Soc?2009, 1, 2240–2243.
[16]
Rheinberger, K.; Steinberger, T.; Unterkofler, K.; Baubin, M.; Klotz, A.; Amann, A. Removal of CPR artifacts from the ventricular fibrillation ECG by adaptive regression on lagged reference signals. IEEE Trans. Biomed. Eng?2008, 55, 130–137.
[17]
Hus?y, J.H.; Eilevstj?nn, J.; Eftest?l, T.; Aase, S.O.; Myklebust, H.; Steen, P.A. Removal of cardiopulmonary resuscitation artifacts from human ECG using an efficient matching pursuit-like algorithm. IEEE Trans. Biomed. Eng?2002, 49, 1287–1298.
[18]
Irusta, U.; Ruiz, J.; de Gauna, S.R.; Eftest?l, T.; Kramer-Johansen, J. A least mean-square filter for the estimation of the cardiopulmonary resuscitation artifact based on the frequency of the compressions. IEEE Trans. Biomed. Eng?2009, 56, 1052–1062.
[19]
Wu, Y.; Rangayyan, R.M.; Zhou, Y.; Ng, S.C. Filtering electrocardiographic signals using an unbiased and normalized adaptive noise reduction system. Med. Eng. Phys?2009, 31, 17–26.
[20]
Lander, P.; Berbari, E.J. Time-frequency plane Wiener filtering of the high-resolution ECG: background and time-frequency representations. IEEE Trans. Biomed. Eng?1997, 44, 247–2455.
[21]
Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resourcefor complex physiologic signals. Circulation?2000, 101, E 215–E 220.
[22]
Friesen, G.M.; Jannett, T.C.; Jadallah, M.A.; Yates, S.L.; Quint, S.R.; Nagle, H.T. A comparison of the noise sensitivity of nine QRS detection algorithms. IEEE Trans. Biomed. Eng?1990, 37, 85–98.
[23]
Moody, G.B.; Muldrow, W.E.; Mark, R.G. A noise stress test for arrhythmia detectors. Comput. Cardiol?1984, 11, 381–384.
[24]
Chang, K.M.; Liu, S.H. Gaussian Noise Filtering from ECG by Wiener Filter and Ensemble Empirical Mode Decomposition. J. Sign. Process. Syst?2010, doi:10.1007/s11265-009-0447-z.
[25]
Saeed, V.V. Advanced Digital Signal Processing and Noise Reduction, 3rd. ed ed.; Wiley: New York, NY, USA, 2006.