全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2010 

Exploring Infrared Sensoring for Real Time Welding Defects Monitoring in GTAW

DOI: 10.3390/s100605962

Keywords: Gas Tungsten Arc Welding, welding monitoring, infrared, statistic methods

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents an evaluation of an infrared sensor for monitoring the welding pool temperature in a Gas Tungsten Arc Welding (GTAW) process. The purpose of the study is to develop a real time system control. It is known that the arc welding pool temperature is related to the weld penetration depth; therefore, by monitoring the temperature, the arc pool temperature and penetration depth are also monitored. Various experiments were performed; in some of them the current was varied and the temperature changes were registered, in others, defects were induced throughout the path of the weld bead for a fixed current. These simulated defects resulted in abrupt changes in the average temperature values, thus providing an indication of the presence of a defect. The data has been registered with an acquisition card. To identify defects in the samples under infrared emissions, the timing series were analyzed through graphics and statistic methods. The selection of this technique demonstrates the potential for infrared emission as a welding monitoring parameter sensor.

References

[1]  Chen, W.; Chin, B.A. Monitoring joint penetration using infrared sensing techniques. Weld J?1990, 69, 181s–185s.
[2]  Kerr, H.W.; Hellina, M.C.; Huissoon, J.P. Identifying welding pool dynamics for GMA fillet welds. Scien. Tech. Weld. Join?1999, 4, 15–20, doi:10.1179/136217199322910716.
[3]  Luo, H.K.; Lawrence, F.M.K.; Mohanamurthy, P.H.; Devanathan, R.; Chen, X.Q.; Chan, S.P. Vision based GTA weld pool sensing and control using neurofuzzy logic. In SIMTech Technical Report AT/00/011/AMP; Automated Material Processing Group, Singapore Institute of Manufacturing Technology: Singapore, 2000; pp. 1–7.
[4]  Mirapeix, J.; Cobo, A.; Conde, O.M.; Jaúregui, C.; López-Higuera, J.M. Real-time arc welding defect detection technique by means of plasma spectrum optical analysis. NDT&E Int?2006, 39, 356–360, doi:10.1016/j.ndteint.2005.10.004.
[5]  Fortunko, C.M. Ultrasonic detection and sizing of two-dimensional weld defects in the long-wavelength limit. Ultrason. Symp?1980, 862–867.
[6]  Liu, Y.; Li, X.H.; Ren, D.H.; Ye, S.H.; Wang, B.G.; Sun, J. Computer vision application for weld defect detection and evaluation, automated optical inspection for industry. Theory Technol. Appl. II?1998, 3558, 354–357.
[7]  Nagarajan, S.W.; Chen, H.B.; Chin, A. Infrared sensing for adaptive arc welding. Weld J?1989, 68, 462s–466s.
[8]  Sanders, P.G.; Leong, K.H.; Keske, J.S.; Kornecki, G. Real-time Monitoring of laser beam welding using infrared weld emissions. J. Laser Appl?1998, 10, 205–211, doi:10.2351/1.521853.
[9]  Venkatraman, B.; Menaka, M.; Vasudevan, M.; Baldev, R. Thermography for online detection of incomplete penetration and penetration depth estimation. Proceedings of Asia-Pacific Conference on NDT, Auckland, New Zealand, 5–10 November, 2006.
[10]  Chin, B.A.; Zee, R.H.; Wikle, H.C. A sensing system for weld process control. J. Mater. Process. Technol?1999, 89–90, 254–259.
[11]  Wikle, H.C., III; Kottilingam, S.; Zee, R.H.; Chin, B.A. Infrared sensing techniques for penetration depth control of the submerged arc welding process. J. Mater. Process. Technol?2001, 113, 228–233, doi:10.1016/S0924-0136(01)00587-8.
[12]  Araújo, C.F.B. Estudo da Monitora??o por Infravermelho como Indicador de Penetra??o em Soldas Obtidas no Processo TIG. Masters Dissertation, University of Brasilia, Brasilia, Brasil, 2004.
[13]  Merchant, J. Infrared temperature measurement theory and applications. Mikron Instruments Company: Oakland, NJ, USA. Application Notes..
[14]  Appel, U.; Brandt, A.V. Adaptive sequential segmentation of piecewise stationary time series. Inform. Sci?1983, 29, 27–56, doi:10.1016/0020-0255(83)90008-7.
[15]  Alfaro, S.C.A.; Carvalho, G.C.; Da Cunha, F.R. A statistical approach for monitoring stochastic welding processes. J. Mater Process Technol?2006, 175, 4–14, doi:10.1016/j.jmatprotec.2005.04.049.
[16]  Gustafsson, F. Adaptative Filtering and Change Detection; John Wiley & Sons: New York, NY, USA, 2000.
[17]  Pollock, D.S.G. A Handbook of Time Series Analysis, Signal Processing and Dynamics, 1st ed ed.; Academic Press: New York, NY, USA, 1999.
[18]  Jazwinski, A.H. Stochastic Processes and Filtering Theory, 1st ed ed.; Academic Press: New York, NY, USA, 1970.
[19]  Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification, 2nd ed ed.; John Wiley and Sons: New York, NY, USA, 2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133