全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2010 

The Role of PAS Kinase in PASsing the Glucose Signal

DOI: 10.3390/s100605668

Keywords: PAS kinase, PASKIN, glucose sensor, protein phosphorylation, PAS domain, metabolic syndrome

Full-Text   Cite this paper   Add to My Lib

Abstract:

PAS kinase is an evolutionarily conserved nutrient responsive protein kinase that regulates glucose homeostasis. Mammalian PAS kinase is activated by glucose in pancreatic beta cells, and knockout mice are protected from obesity, liver triglyceride accumulation, and insulin resistance when fed a high-fat diet. Yeast PAS kinase is regulated by both carbon source and cell integrity stress and stimulates the partitioning of glucose toward structural carbohydrate biosynthesis. In our current model for PAS kinase regulation, a small molecule metabolite binds the sensory PAS domain and activates the enzyme. Although bona fide PAS kinase substrates are scarce, in vitro substrate searches provide putative targets for exploration.

References

[1]  Hedbacker, K.; Carlson, M. SNF1/AMPK pathways in yeast. Front Biosci?2008, 13, 2408–2420, doi:10.2741/2854. 17981722
[2]  Warburg, O. On the origin of cancer cells. Science?1956, 123, 309–314, doi:10.1126/science.123.3191.309. 13298683
[3]  Hardie, D.G. AMP-activated/SNF1 protein kinases: Conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol?2007, 8, 774–785, doi:10.1038/nrm2249. 17712357
[4]  Steinberg, G.R.; Kemp, B.E. AMPK in health and disease. Physiol. Rev?2009, 89, 1025–1078, doi:10.1152/physrev.00011.2008. 19584320
[5]  Martin, D.E.; Hall, M.N. The expanding TOR signaling network. Curr. Opin. Cell Biol?2005, 17, 158–166, doi:10.1016/j.ceb.2005.02.008. 15780592
[6]  Harris, T.E.; Lawrence, J.C., Jr. TOR signaling. Sci. STKE?2003, 2003. re15.
[7]  Grose, J.H.; Smith, T.L.; Sabic, H.; Rutter, J. Yeast PAS kinase coordinates glucose partitioning in response to metabolic and cell integrity signaling. Embo. J?2007, 26, 4824–4830, doi:10.1038/sj.emboj.7601914. 17989693
[8]  Grose, J.H.; Sundwall, E.; Rutter, J. Regulation and function of yeast PAS kinase: A role in the maintenance of cellular integrity. Cell Cycle?2009, 8, 1824–1832, doi:10.4161/cc.8.12.8799. 19440050
[9]  Rutter, J.; Probst, B.L.; McKnight, S.L. Coordinate regulation of sugar flux and translation by PAS kinase. Cell?2002, 111, 17–28, doi:10.1016/S0092-8674(02)00974-1. 12372297
[10]  Smith, T.L.; Rutter, J. Regulation of glucose partitioning by PAS kinase and Ugp1 phosphorylation. Mol. Cell?2007, 26, 491–499, doi:10.1016/j.molcel.2007.03.025. 17531808
[11]  da Silva Xavier, G.; Rutter, J.; Rutter, G.A. Involvement of Per-Arnt-Sim (PAS) kinase in the stimulation of preproinsulin and pancreatic duodenum homeobox 1 gene expression by glucose. Proc. Natl. Acad. Sci. USA?2004, 101, 8319–8324, doi:10.1073/pnas.0307737101. 15148392
[12]  Fontes, G.; Semache, M.; Hagman, D.K.; Tremblay, C.; Shah, R.; Rhodes, C.J.; Rutter, J.; Poitout, V. Involvement of Per-Arnt-Sim kinase and extracellular-regulated kinases-1/2 in palmitate inhibition of insulin gene expression in pancreatic beta-cells. Diabetes?2009, 58, 2048–2058, doi:10.2337/db08-0579. 19502418
[13]  Hao, H.X.; Cardon, C.M.; Swiatek, W.; Cooksey, R.C.; Smith, T.L.; Wilde, J.; Boudina, S.; Abel, E.D.; McClain, D.A.; Rutter, J. PAS kinase is required for normal cellular energy balance. Proc. Natl. Acad. Sci. USA?2007, 104, 15466–15471, doi:10.1073/pnas.0705407104. 17878307
[14]  Hao, H.X.; Rutter, J. The role of PAS kinase in regulating energy metabolism. IUBMB Life?2008, 60, 204–209, doi:10.1002/iub.32. 18344204
[15]  Rutter, J.; Michnoff, C.H.; Harper, S.M.; Gardner, K.H.; McKnight, S.L. PAS kinase: An evolutionarily conserved PAS domain-regulated serine/threonine kinase. Proc. Natl. Acad. Sci. USA?2001, 98, 8991–8996, doi:10.1073/pnas.161284798. 11459942
[16]  Wilson, W.A.; Skurat, A.V.; Probst, B.; de Paoli-Roach, A.; Roach, P.J.; Rutter, J. Control of mammalian glycogen synthase by PAS kinase. Proc. Natl. Acad. Sci. USA?2005, 102, 16596–16601, doi:10.1073/pnas.0508481102. 16275910
[17]  Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the human genome. Science?2002, 298, 1912–1934, doi:10.1126/science.1075762. 12471243
[18]  Gu, Y.Z.; Hogenesch, J.B.; Bradfield, C.A. The PAS superfamily: Sensors of environmental and developmental signals. Annu. Rev. Pharmacol. Toxicol?2000, 40, 519–561, doi:10.1146/annurev.pharmtox.40.1.519. 10836146
[19]  Moglich, A.; Ayers, R.A.; Moffat, K. Structure and signaling mechanism of Per-ARNT-Sim domains. Structure?2009, 17, 1282–1294, doi:10.1016/j.str.2009.08.011. 19836329
[20]  Sevvana, M.; Vijayan, V.; Zweckstetter, M.; Reinelt, S.; Madden, D.R.; Herbst-Irmer, R.; Sheldrick, G.M.; Bott, M.; Griesinger, C.; Becker, S. A ligand-induced switch in the periplasmic domain of sensor histidine kinase CitA. J. Mol. Biol?2008, 377, 512–523, doi:10.1016/j.jmb.2008.01.024. 18258261
[21]  Pellequer, J.L.; Wager-Smith, K.A.; Kay, S.A.; Getzoff, E.D. Photoactive yellow protein: A structural prototype for the three-dimensional fold of the PAS domain superfamily. Proc. Natl. Acad. Sci. USA?1998, 95, 5884–5890, doi:10.1073/pnas.95.11.5884. 9600888
[22]  Borgstahl, G.E.; Williams, D.R.; Getzoff, E.D. 1.4 A structure of photoactive yellow protein, a cytosolic photoreceptor: Unusual fold, active site, and chromophore. Biochemistry?1995, 34, 6278–6287, doi:10.1021/bi00019a004. 7756254
[23]  Monson, E.K.; Weinstein, M.; Ditta, G.S.; Helinski, D.R. The FixL protein of Rhizobium meliloti can be separated into a heme-binding oxygen-sensing domain and a functional C-terminal kinase domain. Proc. Natl. Acad. Sci. USA?1992, 89, 4280–4284, doi:10.1073/pnas.89.10.4280. 1584762
[24]  Moglich, A.; Ayers, R.A.; Moffat, K. Design and signaling mechanism of light-regulated histidine kinases. J. Mol. Biol?2009, 385, 1433–1444, doi:10.1016/j.jmb.2008.12.017. 19109976
[25]  Lee, J.; Natarajan, M.; Nashine, V.C.; Socolich, M.; Vo, T.; Russ, W.P.; Benkovic, S.J.; Ranganathan, R. Surface sites for engineering allosteric control in proteins. Science?2008, 322, 438–442, doi:10.1126/science.1159052. 18927392
[26]  Strickland, D.; Moffat, K.; Sosnick, T.R. Light-activated DNA binding in a designed allosteric protein. Proc. Natl. Acad. Sci. USA?2008, 105, 10709–10714, doi:10.1073/pnas.0709610105. 18667691
[27]  Amezcua, C.A.; Harper, S.M.; Rutter, J.; Gardner, K.H. Structure and interactions of PAS kinase N-terminal PAS domain: Model for intramolecular kinase regulation. Structure?2002, 10, 1349–1361, doi:10.1016/S0969-2126(02)00857-2. 12377121
[28]  Dux, P.; Rubinstenn, G.; Vuister, G.W.; Boelens, R.; Mulder, F.A.; Hard, K.; Hoff, W.D.; Kroon, A.R.; Crielaard, W.; Hellingwerf, K.J.; Kaptein, R. Solution structure and backbone dynamics of the photoactive yellow protein. Biochemistry?1998, 37, 12689–12699, doi:10.1021/bi9806652. 9737845
[29]  Holdeman, T.C.; Gardner, K.H. 1H, 13C and 15N chemical shift assignments of the N-terminal PAS domain of mNPAS2. J. Biomol. NMR?2001, 21, 383–384, doi:10.1023/A:1013334608913. 11824759
[30]  Gong, W.; Hao, B.; Mansy, S.S.; Gonzalez, G.; Gilles-Gonzalez, M.A.; Chan, M.K. Structure of a biological oxygen sensor: A new mechanism for heme-driven signal transduction. Proc. Natl. Acad. Sci. USA?1998, 95, 15177–15182, doi:10.1073/pnas.95.26.15177. 9860942
[31]  Gong, W.; Hao, B.; Chan, M.K. New mechanistic insights from structural studies of the oxygen-sensing domain of Bradyrhizobium japonicum FixL. Biochemistry?2000, 39, 3955–3962, doi:10.1021/bi992346w. 10747783
[32]  Beausoleil, S.A.; Jedrychowski, M.; Schwartz, D.; Elias, J.E.; Villen, J.; Li, J.; Cohn, M.A.; Cantley, L.C.; Gygi, S.P. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc. Natl. Acad. Sci. USA?2004, 101, 12130–12135, doi:10.1073/pnas.0404720101. 15302935
[33]  Marx, A.; Nugoor, C.; Muller, J.; Panneerselvam, S.; Timm, T.; Bilang, M.; Mylonas, E.; Svergun, D.I.; Mandelkow, E.M.; Mandelkow, E. Structural variations in the catalytic and ubiquitin-associated domains of microtubule-associated protein/microtubule affinity regulating kinase (MARK) 1 and MARK2. J. Biol. Chem?2006, 281, 27586–27599, doi:10.1074/jbc.M604865200. 16803889
[34]  Chenna, R.; Sugawara, H.; Koike, T.; Lopez, R.; Gibson, T.J.; Higgins, D.G.; Thompson, J.D. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res?2003, 31, 3497–3500, doi:10.1093/nar/gkg500. 12824352
[35]  Eckhardt, K.; Troger, J.; Reissmann, J.; Katschinski, D.M.; Wagner, K.F.; Stengel, P.; Paasch, U.; Hunziker, P.; Borter, E.; Barth, S.; Schlafli, P.; Spielmann, P.; Stiehl, D.P.; Camenisch, G.; Wenger, R.H. Male germ cell expression of the PAS domain kinase PASKIN and its novel target eukaryotic translation elongation factor eEF1A1. Cell Physiol. Biochem?2007, 20, 227–240. 17595531
[36]  Huh, W.K.; Falvo, J.V.; Gerke, L.C.; Carroll, A.S.; Howson, R.W.; Weissman, J.S.; O'Shea, E.K. Global analysis of protein localization in budding yeast. Nature?2003, 425, 686–691, doi:10.1038/nature02026. 14562095
[37]  Hofer, T.; Spielmann, P.; Stengel, P.; Stier, B.; Katschinski, D.M.; Desbaillets, I.; Gassmann, M.; Wenger, R.H. Mammalian PASKIN, a PAS-serine/threonine kinase related to bacterial oxygen sensors. Biochem. Biophys. Res. Commun?2001, 288, 757–764, doi:10.1006/bbrc.2001.5840. 11688972
[38]  Katschinski, D.M.; Marti, H.H.; Wagner, K.F.; Shibata, J.; Eckhardt, K.; Martin, F.; Depping, R.; Paasch, U.; Gassmann, M.; Ledermann, B.; Desbaillets, I.; Wenger, R.H. Targeted disruption of the mouse PAS domain serine/threonine kinase PASKIN. Mol. Cell. Biol?2003, 23, 6780–6789, doi:10.1128/MCB.23.19.6780-6789.2003. 12972598
[39]  Poitout, V.; Robertson, R.P. Glucolipotoxicity: Fuel excess and beta-cell dysfunction. Endocr. Rev?2008, 29, 351–366. 18048763
[40]  An, R.; da Silva Xavier, G.; Hao, H.X.; Semplici, F.; Rutter, J.; Rutter, G.A. Regulation by Per-Arnt-Sim (PAS) kinase of pancreatic duodenal homeobox-1 nuclear import in pancreatic beta-cells. Biochem. Soc. Trans?2006, 34, 791–793, doi:10.1042/BST0340791. 17052199
[41]  Soliz, J.; Soulage, C.; Borter, E.; van Patot, M.T.; Gassmann, M. Ventilatory responses to acute and chronic hypoxia are altered in female but not male Paskin-deficient mice. Am. J. Physiol. Regul. Integr. Comp. Physiol?2008, 295, R649–658, doi:10.1152/ajpregu.00876.2007. 18509100
[42]  Schuller, H.J. Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr. Genet?2003, 43, 139–160. 12715202
[43]  Kellis, M.; Birren, B.W.; Lander, E.S. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature?2004, 428, 617–624, doi:10.1038/nature02424. 15004568
[44]  Bergthorsson, U.; Andersson, D.I.; Roth, J.R. Ohno's dilemma: Evolution of new genes under continuous selection. Proc. Natl. Acad. Sci. USA?2007, 104, 17004–17009, doi:10.1073/pnas.0707158104. 17942681
[45]  Conant, G.C.; Wolfe, K.H. Turning a hobby into a job: How duplicated genes find new functions. Nat. Rev. Genet?2008, 9, 938–950, doi:10.1038/nrg2482. 19015656
[46]  Wolfe, K. Robustness—It's not where you think it is. Nat. Genet?2000, 25, 3–4, doi:10.1038/75560. 10802639
[47]  Parodi, A.J. Role of N-oligosaccharide endoplasmic reticulum processing reactions in glycoprotein folding and degradation. Biochem. J?2000, 348, 1–13, doi:10.1042/0264-6021:3480001. 10794707
[48]  Probst, B.L.; Xie, S.; Wu, L.F.; Michnoff, C.H.; Jetter, O.; Quin, L.; Rutter, J.; McKnight, S.L.. Two distinct high trhoughput screens of PAS kinase yield convergent insight to enzyme function.
[49]  Caprio, S.; Cline, G.; Boulware, S.; Permanente, C.; Shulman, G.I.; Sherwin, R.S.; Tamborlane, W.V. Effects of puberty and diabetes on metabolism of insulin-sensitive fuels. Am. J. Physiol?1994, 266, E885–E891. 8023918
[50]  Shulman, G.I.; Rothman, D.L.; Jue, T.; Stein, P.; DeFronzo, R.A.; Shulman, R.G. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N. Engl. J. Med?1990, 322, 223–228, doi:10.1056/NEJM199001253220403. 2403659
[51]  Bouche, C.; Serdy, S.; Kahn, C.R.; Goldfine, A.B. The cellular fate of glucose and its relevance in type 2 diabetes. Endocr. Rev?2004, 25, 807–830, doi:10.1210/er.2003-0026. 15466941
[52]  Rayasam, G.V.; Tulasi, V.K.; Sodhi, R.; Davis, J.A.; Ray, A. Glycogen synthase kinase 3: More than a namesake. Br. J. Pharmacol.?2009, 156, 885–898, doi:10.1111/j.1476-5381.2008.00085.x. 19366350
[53]  MacAulay, K.; Woodgett, J.R. Targeting glycogen synthase kinase-3 (GSK-3) in the treatment of Type 2 diabetes. Expert Opin. Ther. Targets?2008, 12, 1265–1274, doi:10.1517/14728222.12.10.1265. 18781825
[54]  Skurat, A.V.; Roach, P.J. Phosphorylation of sites 3a and 3b (Ser640 and Ser644) in the control of rabbit muscle glycogen synthase. J. Biol. Chem?1995, 270, 12491–12497, doi:10.1074/jbc.270.21.12491. 7759494
[55]  Wei, C.L.; Kainuma, M.; Hershey, J.W. Characterization of yeast translation initiation factor 1A and cloning of its essential gene. J. Biol. Chem?1995, 270, 22788–22794, doi:10.1074/jbc.270.39.22788. 7559407
[56]  Maag, D.; Fekete, C.A.; Gryczynski, Z.; Lorsch, J.R. A conformational change in the eukaryotic translation preinitiation complex and release of eIF1 signal recognition of the start codon. Mol. Cell?2005, 17, 265–275, doi:10.1016/j.molcel.2004.11.051. 15664195
[57]  Hernandez, G.; Vazquez-Pianzola, P. Functional diversity of the eukaryotic translation initiation factors belonging to eIF4 families. Mech. Dev?2005, 122, 865–876, doi:10.1016/j.mod.2005.04.002. 15922571
[58]  Altmann, M.; Schmitz, N.; Berset, C.; Trachsel, H. A novel inhibitor of cap-dependent translation initiation in yeast: P20 competes with eIF4G for binding to eIF4E. EMBO J?1997, 16, 1114–1121, doi:10.1093/emboj/16.5.1114. 9118949
[59]  Zanchin, N.I.; McCarthy, J.E. Characterization of the in vivo phosphorylation sites of the mRNAcap-binding complex proteins eukaryotic initiation factor-4E and p20 in Saccharomyces cerevisiae. J. Biol. Chem?1995, 270, 26505–26510, doi:10.1074/jbc.270.44.26505. 7592868
[60]  Sobel, S.G.; Wolin, S.L. Two yeast La motif-containing proteins are RNA-binding proteins that associate with polyribosomes. Mol. Biol. Cell?1999, 10, 3849–3862. 10564276
[61]  Hon, T.; Lee, H.C.; Hach, A.; Johnson, J.L.; Craig, E.A.; Erdjument-Bromage, H.; Tempst, P.; Zhang, L. The Hsp70-Ydj1 molecular chaperone represses the activity of the heme activator protein Hap1 in the absence of heme. Mol. Cell Biol?2001, 21, 7923–7932, doi:10.1128/MCB.21.23.7923-7932.2001. 11689685
[62]  Kagami, M.; Toh-e, A.; Matsui, Y. SRO9, a multicopy suppressor of the bud growth defect in the Saccharomyces cerevisiae rho3-deficient cells, shows strong genetic interactions with tropomyosin genes, suggesting its role in organization of the actin cytoskeleton. Genetics?1997, 147, 1003–1016. 9383048
[63]  Freire, M.A. Translation initiation factor (iso) 4E interacts with BTF3, the beta subunit of the nascent polypeptide-associated complex. Gene?2005, 345, 271–277, doi:10.1016/j.gene.2004.11.030. 15716105
[64]  Rhoads, R.E. eIF4E: New family members, new binding partners, new roles. J. Biol. Chem?2009, 284, 16711–16715, doi:10.1074/jbc.R900002200. 19237539
[65]  Westermann, P.; Nygard, O.; Bielka, H. Cross-linking of Met-tRNAf to eIF-2β and to the ribosomal proteins S3a and S6 within the eukaryotic inhibition complex, eIF-2-GMPPCP Met-tRNAf-small ribosomal subunit. Nucleic. Acids Res?1981, 9, 2387–2396, doi:10.1093/nar/9.10.2387. 6910637
[66]  Nygard, O.; Westermann, P.; Hultin, T. Identification of neighbouring components in the quaternary eukaryotic protein synthesis initiation complex, eIF-2.GTP.Met-tRNAf.small ribosomal subunit. Acta. Chem. Scand. B?1981, 35, 57–59. 7282237
[67]  Martinis, S.A.; Plateau, P.; Cavarelli, J.; Florentz, C. Aminoacyl-tRNA synthetases: A new image for a classical family. Biochimie?1999, 81, 683–700, doi:10.1016/S0300-9084(99)80126-6. 10492015
[68]  Hellen, C.U.; Sarnow, P. Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev?2001, 15, 1593–1612, doi:10.1101/gad.891101. 11445534
[69]  Nagy, E.; Rigby, W.F. Glyceraldehyde-3-phosphate dehydrogenase selectively binds AU-rich RNA in the NAD(+)-binding region (Rossmann fold). J. Biol. Chem?1995, 270, 2755–2763, doi:10.1074/jbc.270.6.2755. 7531693

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133