This paper presents a review, based on the published literature and on the authors’ own research, of the current state of the art of fiber-optic capillary sensors and related instrumentation as well as their applications, with special emphasis on point-of-care chemical and biochemical sensors, systematizing the various types of sensors from the point of view of the principles of their construction and operation. Unlike classical fiber-optic sensors which rely on changes in light propagation inside the fiber as affected by outside conditions, optical capillary sensors rely on changes of light transmission in capillaries filled with the analyzed liquid, which opens the possibility of interesting new applications, while raising specific issues relating to the construction, materials and instrumentation of those sensors.
References
[1]
Wolfbeis, O.S. Fiber-Optic Chemical Sensors and Biosensors. Anal. Chem?2008, 80, 4269–4283.
[2]
Wolfbeis, O.S. Fiber-Optic Chemical Sensors and Biosensors. Anal. Chem?2006, 78, 3859–3874.
[3]
Wolfbeis, O.S. Fiber-Optic Chemical Sensors and Biosensors. Anal. Chem?2004, 76, 3269–3284.
[4]
Wolfbeis, O.S. Fiber-Optic Chemical Sensors and Biosensors. Anal. Chem?2000, 72, 81–90.
[5]
Baldini, F.; Chester, A.N.; Homola, J.; Martellucci, S. Optical Chemical Sensors (NATO Science Series II: Mathematics, Physics and Chemistry v. 224); Springer Science + Business Media: Berlin, Germany, 2006.
[6]
Righini, G.C.; Tajani, A.; Cutolo, A. An Introduction to Optoelectronic Sensors; World Scientific Publishers: Singapore, 2009.
Baldini, F.; Giannetti, A. Optical Chemical and Biochemical Sensors: New Trends. Proc. SPIE?2005, 5826, 485–499.
[10]
Integrated Project CLINICIP IST-FP6-506965. Publishable Final Activity Report. Available online: http://www.clinicip.org/fileadmin/clinicip/CLINICIP-Final-Report.pdf/ (accessed on 29 March 2010).
[11]
Dress, P.; Franke, H. A Cylindrical Liquid-Core Waveguide. Appl. Phys. B: Lasers Opt?1996, 63, 12–19.
[12]
Dallas, T.; Dasgupta, P.K. Light at the End of the Tunnel: Recent Analytical Applications of Liquid-core Waveguides. Trends Anal. Chem?2004, 23, 385–392.
[13]
Altkorn, R.; Koev, I.; Van Duyne, R.P.; Litorja, M. Low-loss Liquid-core Optical Fiber for Low-refractive-index Liquids: fabrication. Appl. Opt?1997, 36, 8992–8998.
[14]
Campopiano, S.; Bernini, R.; Zeni, L.; Sarro, P.M. Microfluidic Sensor Based on Integrated Optical Hollow Waveguides. Optics Letters?2004, 29, 1896–1896.
[15]
Bravo, J.; Matias, I.R.; Del Villar, I.; Corres, J.M.; Arregui, F.J. Nanofilms on Hollow Core Fiber-based Structures: An Optical Study. J. Lightwave Technol?2006, 24, 2100–2107.
[16]
Baldini, F.; Giannetti, A.; Mencaglia, A.A. Optical sensor for interstitial pH measurements. J. Biomed. Opt?2007, 12, 024024, doi:10.1117/1.2714807.
[17]
Del Bianco, A.; Baldini, F.; Bacci, M.; Wolfbeis, O.S.; Klimant, I. Oxygen Detection via Optical Fibers Using Bis(Histidinato) Cobalt(II) as Indicator. Mol. Cryst. Liq. Cryst?1993, 229, 241–245.
[18]
Dasgupta, P.K.; Genfa, Z.; Poruthoor, S.K.; Caldwell, S.; Dong, S.; Liu, S.Y. High-Sensitivity Gas Sensors Based on Gas-Permeable Liquid Core Waveguides and Long-Path Absorbance Detection. Anal. Chem?1998, 70, 4661–4669.
[19]
Bizzarri, A.; Koehler, H.; Cajlakovic, M.; Pasic, A.; Schaupp, L.; Klimant, I.; Ribitsch, V. Continuous Oxygen Monitoring in Subcutaneous Adipose Tissue Using Microdialysis. Anal. Chim. Acta?2006, 573–574, 48–56.
Caron, S.; Pare, C.; Proulx., A.; Grenier, P.; Matejec, V. Velocity Measurements Comparison of Water and Pentane Travelling in Capillary Optical Fibers Coated Respectively With Xerogel and a Poly(Dimethylsiloxane) Absorbing Layer. Proc. SPIE?2009, 7386, 73861E.
[22]
Miluski, P.; Dorosz, D. Measurement of Refractive Index Using Capillary Waveguide. Proc. SPIE?2006, 6347, 634742.
[23]
Zamora, V.; Díez, A.; Andrés, M.V.; Gimeno, B. Refractometric Sensor Based on Whispering-Gallery Modes of Thin Capillarie. Opt. Exp?2007, 15, 12011–12016.
[24]
Zhu, H.; White, I.M.; Suter, J.D.; Dale, P.S.; Fan, X. Analysis of Biomolecule Detection With Optofluidic Ring Resonator Sensors. Opt. Exp?2007, 15, 9139–9146.
[25]
Abgrall, P.; Gue, A.M. Lab-on-Chip Technologies: Making a Microfluidic Network and Coupling It into a Complete Microsystem–A Review. J. Micromech. Microeng?2007, 17, R15–R49.
[26]
Luan, L.; Evans, R.D.; Jokerst, N.M.; Fair, R.B. Integrated Optical Sensor in a Digital Microfluidic Platform. IEEE Sensor. J?2008, 8, 628–635.
[27]
Woias, P. Micropumps-Past Progress and Future Prospects. Sens. Actuator. B?2005, 105, 28–38.
[28]
Bartels Mikrotechnik. Available online: http://www.bartels-mikrotechnik.de/index.php/Micropumps.html/ (accessed on 29 March 2010).
[29]
Bartels Mikrotechnik. Available online: http://www.bartels-mikrotechnik.de/index.php/Microvalves./html/ (accessed on 29 March 2010).
[30]
Polymer Capillary Tubing (microtubing). Available online: http://www.paradigmoptics.com/capillary/capillary.html/ (accessed on 30 March 2010).
[31]
Liquid Waveguide Capillary Cell. Available online: http://www.wpiinc.com/pdf/lwcc-im-040208.pdf/ (accessed on 30 March 2010).
[32]
Yang, M.K.; French, R.H.; Tokarsky, E.W. Optical Properties of Teflon? AF Amorphous Fluoropolymers. J. Micro/Nanolith. MEMS MOEMS?2008, 7, 033010.
[33]
Waterbury, R.D.; Yao, W.; Byrne, R.H. Long Pathlength Absorbance Spectroscopy: Trace Analysis of Fe(II) Using a 4.5 M Liquid Core Waveguide. Anal. Chem. Acta?1997, 357, 99–102.
[34]
Kozodoy, R.L.; Micheels, R.H.; Harrington, J.A. Small-Bore Hollow Waveguide Infrared Absorption Cells for Gas Sensing. Appl. Spectrosc?1996, 50, 415–41.
[35]
De Melas, F.; Pustogov, V.V.; Croitoru, N.; Mizaikoff, B. Development and Optimization of a Mid-Infrared Hollow Waveguide Gas Sensor Combined with a Supported Capillary Membrane Sampler. Appl. Spectrosc?2003, 57, 600–606.
[36]
De Melas, F.; Pustogov, V.V.; Wolcott, D.K.; Olson, D.C.; Inberg, A.; Croitoru, N.; Mizaikoff, B. Combination of a Mid-infrared Hollow Waveguide Gas Sensor With a Supported Capillary membrane sampler for the detection of organic compounds in water. Intern. J. Environ. Anal. Chem?2003, 83, 573–583.
[37]
Charlton, C.; de Melas, F.; Inberg, A.; Croitoru, N.; Mizaikoff, B. Hollow-waveguide Gas Sensing With Room-temperature Quantum Cascade Lasers. IEE Proc.-Optoelectron?2003, 150, 306–309.
[38]
Wu, S.; Deev, A.; Haught, M.; Tang, Y. Hollow Waveguide Quantum Cascade Laser Spectrometer as an Online Microliter Sensor for Gas Chromatography. J. Chromat. A?2008, 1188, 327–330.
[39]
Yang, J.; Her, J.W.; Chen, S.H. Development of an Infrared Hollow Waveguide as a Sensing Device for Detection of Organic Compounds in Aqueous Solutions. Anal. Chem?1999, 71, 3740–3746.
[40]
Yang, J.; Lee, C.J. Development of the Infrared Hollow Waveguide Sampler for the Detection of Chlorophenols in Aqueous Solutions. J. AOAC Int?2002, 85, 163–172.
[41]
Yang, J.; Chen, P.Y. Development of an Infrared Hollow Waveguide Sampler for the Detection of Organic Compounds in Aqueous Solutions with Limited Sample Volumes. Anal. Sci?2002, 18, 555–560.
Zhang, J.; Hoogmartens, J.; Van Schepdael, A. Advances in Capillary Electrophoretically Mediated Microanalysis: An Update. Electrophoresis?2008, 29, 56–65.
[46]
Dabek-Zlotorzynska, E.; Celo, V.; Yassine, M.M. Recent Advances in CE and CEC of Pollutants. Electrophoresis?2008, 29, 310–323.
[47]
Herrero, M.; Garcia-Caňas, V.; Simo, C.; Cifuentes, A. Recent Advances in the Application of Capillary Electromigration Methods for Food Analysis and Foodonomics. Electrophoresis?2010, 31, 205–228.
[48]
El Rassi, Z. Electrophoretic and Electrochromatographic Separation of Proteins in Capillaries: An Update Covering 2007–2009. Electrophoresis?2010, 31, 174–191.
[49]
Breadmore, M.C.; Thabano, J.R.E.; Dawod, M.; Kazarian, A.A.; Quirino, J.P.; Guijt, R.M. Recent Advances in Enhancing the Sensitivity of Electrophoresis and Electrochromatography in Capillaries and Microchips (2006–2008). Electrophoresis?2009, 30, 230–248.
[50]
Escarpa, A.; González, M.C.; Gil, M.A.L.; Crevillén, A.G.; Hervás, M.; García, M. Microchips for CE: Breakthroughs in Real-World Food Analysis. Electrophoresis?2009, 29, 4852–4861.
[51]
Macka, M.; Yang, W.C.; Zakaria, P.; Shitangkoon, A.; Hilder, E.F.; Andersson, P.; Nesterenko, P.; Haddad, P.R. Poly (terafluoroethylene) Separation Capillaries for Capillary Electrophoresis. Properties and Applications. J. Chromatogr. A?2004, 1039, 193–199.
Melanson, J.E.; Lucy, C.A. Violet (405 nm) Diode Laser for Laser Induced Fluorescence Detection in Capillary Electrophoresis. Analyst?2000, 125, 1049–1052.
[54]
Gomez, J.E.; Sandoval, J.E. The Effect of Conditioning of Fused-Silica Capillaries on Their Electrophoretic Performance. Electrophoresis?2008, 29, 381–392.
[55]
Fujimoto, J.G. Optical Coherence Tomography for Ultrahigh Resolution in Vivo Imaging. Nat. Biotechnol?2003, 21, 1361–1366.
Zysk, A.M.; Nguyen, F.T.; Oldenburg, A.L.; Marks, D.L.; Boppart, S.A. Optical Coherence Tomography: A Review of Clinical Development from Bench to Bedside. J. Biomed. Opt?2007, 12, 051403.
[58]
Fercher, A.F.; Hitzenberger, C.K.; Drexler, W.; Kamp, G.; Sattmann, H. In Vivo Optical Coherence Tomography. Am. J. Ophthalmol?1993, 116, 113–114.
[59]
Popescu, D.P.; Sowa, M.G. In Vitro Assessment of Optical Properties of Blood by Applying the Extended Huygens-Fresnel Principle to Time-Domain Optical Coherence Tomography Signal at 1300nm. Int. J. Biomed. Imaging?2008, 591618, 6.
[60]
Texas Instruments. Available online: http://focus.ti.com/docs/prod/folders/print/opt101.html (accessed on 29 March 2010).
[61]
Texas Instruments. Available online: http://focus.ti.com/docs/prod/folders/print/uaf42.html/ (accessed on 29 March 2010).
[62]
Mignani, A.G.; Mencaglia, A.A.; Ciaccheri, L. Fiber-Optic System for Colorimetry and Scattered Colorimetry. Proc. SPIE?2005, 5952, 59520D.
[63]
Mastichiadis, C.; Niotis, A.E.; Petrou, P.S.; Kakabakos, S.E.; Misiakos, K. Capillary-Based Immunoassays, Immunosensors and DNA Sensors–Steps Towards Integration and Multi-Analysis. Trend Anal. Chem?2008, 27, 771–784.
[64]
Weigl, B.H.; Lehmann, H.; Lippitsch, M.E. Optical Sensors Based on Inhomogeneous Waveguiding in the Walls of Capillaries (‘Capillary Waveguide Optrodes’). Sens. Actuator. B?1996, 32, 175–179.
[65]
Paprocki, E.D.; Keller, B.K.; Palmer, C.P.; Laws, W.R.; DeGrandpre, M.D. Characterization of Long Pathlength Capillary Waveguides for Evanescent Fluorescent Sensing Applications. Sens. Actuator. B?2008, 135, 145–151.
[66]
Lippitsch, M.E.; Draxler, S.; Kieslinger, D.; Lehmann, H.; Weigl, B.H. Capillary Waveguide Optrodes-A Novel Approach to Optical Sensing in Medical Diagnostics. Appl. Opt?1996, 35, 3426–3431.
Draxler, S. Lifetime Based Sensors/Sensing, Topics in Fluorescence. Spectroscopy?2005, 10, 241–274.
[69]
Mastichiadis, C.; Kakabakos, S.E.; Christofidis, I.; Koupparis, M.A.; Willetts, C.; Misiako, K. Simultaneous Determination of Pesticides Using a Four-Band Disposable Optical Capillary Immunosensor. Anal Chem?2002, 74, 6064–6072.
[70]
?ajlakovi?, M.; Bizzarri, A.; Ribitsch, V. Luminescence Lifetime-Based Carbon Dioxide Optical Sensor for Clinical Applications. Anal. Chim. Acta?2006, 573–574, 57–64.
[71]
Baldini, F.; Giannetti, A.; Mencaglia, A.A. Optical Sensor for Interstitial pH Measurements. J. Biomedical. Optics?2007, 12, 024024.
[72]
Pasic, A.; Koehler, H.; Schaupp, L.; Pieber, T.R.; Klimant, I. Fiber-optic Flow-through Sensor for Online Monitoring of Glucose. Anal. Bioanal. Chem?2006, 386, 1293–1302.
[73]
Pasic, A.; Koehler, H.; Klimant, I.; Schaupp, L. Miniaturized Fiber-optic Hybrid Sensor for Continuous Glucose Monitoring in Subcutaneous Tissue. Sens. Actuator. B?2007, 122, 60–68.
[74]
Corres, J.M.; Matias, I.R.; Hernaez, M.; Bravo, J.; Arregui, F.J. Optical Fiber Humidity Sensors Using Nanostructured Coatings of SiO2 Nanoparticles. IEEE Sensors J?2008, 8, 281–286.
[75]
Cusano, A.; Giordano, M.; Cutolo, A.; Pisco, M.; Consales, M. Integrated Development of Chemoptical Fiber Nanosensors. Curr. Anal. Chem?2008, 4, 296–315.
[76]
Buosciolo, A.; Consales, M.; Pisco, M.; Cusano, A.; Giordano, M. Fiber-Optic Near-Field Chemical Sensors Based on Wavelength Scale Tin Dioxide Particle Layers. J. Lightwave Techno?2008, 26, 3468–3475.
[77]
Borecki, M. Intelligent Fiber Optic Sensor for Estimating the Concentration of a Mixture-Design and Working Principle. Sensors?2007, 7, 384–399.
[78]
Consales, M.; Crescitelli, A.; Penza, M.; Aversa, P.; Delli Veneri, P.; Giordano, M.; Cusano, A. SWCNT Nano-Composite Optical Sensors for VOC and Gas Trace Detection. Sens. Actuator. B?2009, 13, 351–361.
[79]
Guillemain, H.; Rajarajan, M.; Sun, T.; Grattan, K.T.V.; Lin, Y.C.; Chen, C.T. A Disposable Optical Fiber-Based Capillary Probe for Sensing Lead Ions. IEEE Sensors J?2008, 8, 1656–1662.
[80]
Borecki, M.; Korwin-Pawlowski, M.L.; Beb?owska, M. A Method of Examination of Liquids by Neural Network Analysis of Reflectometric and Transmission Time Domain Data from Optical Capillaries and Fibers. IEEE Sensors J?2008, 8, 1208–1213.
[81]
Sohn, Y.S.; Goodey, A.; Anslyn, E.V.; McDevitt, J.T.; Shear, J.B.; Neikirk, D.P. A Microbead Array Chemical Sensor Using Capillary-Based Sample Introduction: Toward the Development of an “Electronic Tongue”. Biosens. Bioelectron?2005, 21, 303–312.
[82]
Zhao, J.; Fyles, T.M.; James, T.D. Chiral Binol-Bisboronic Acid as Fluorescence Sensor for Sugar Acids. Angew. Chem. Int. Ed. Engl?2004, 43, 3461–3464.
[83]
Zhao, J.; Davidson, M.G.; Mahon, M.F.; Kociok-K?hn, G.; James, T.D. An Enantioselective Fluorescent Sensor for Sugar Acids. J. Am. Chem. Soc?2004, 126, 16179–16186.
[84]
Li, J.; Dasgupta, P.K.; Genfa, Z. Transversely Illuminated Liquid Core Waveguide Based Fluorescence Detection Fluorometric Flow Injection Determination of Aqueous Ammonium/Ammonia. Talanta?1999, 50, 617–623.
[85]
Valentino, J.P.; Troian, S.M.; Wagner, S. Microfluidic Detection and Analysis by Integration of Thermocapillary Actuation with a Thin-Film Optical Waveguide. Appl. Phys. Lett?2005, 86, 184101.
[86]
Pogodina, O.A.; Pustogov, V.V.; de Melas, F.; Haberhauer-Troyer, C.; Rosenberg, E.; Puxbaum, H.; Inberg, A.; Croitoru, N.; Mizaikoff, B. Combination of Sorption Tube Sampling and Thermal Desorption with Hollow Waveguide FT-IR Spectroscopy for Atmospheric Trace Gas Analysis: Determination of Atmospheric Ethene at Lower ppb Level. Anal. Chem?2004, 76, 464–468.
[87]
Borecki, M.; Korwin-Pawlowski, M.L.; Wrzosek, P.; Szmidt, J. Capillaries as the Components of Photonic Sensor Micro-Systems. Meas. Sci. Technol?2008, 19, 065202.
[88]
Pure Component Properties. Available online: http://www.cheric.org/research/kdb/hcprop/cmpsrch.php/ (accessed on 30 March 2010).
[89]
Warrant, J.H.; Adewumi, M.A. Polynomial Objective Functions for Flash Calculations. Ind. Eng. Chem. Res?1993, 32, 1528–1530.
[90]
Weigl, B.; Domingo, G.; LaBarre, P.; Gerlach, J. Towards non- and Minimally Instrumented, Microfluidics-Based Diagnostic Devices. Lab Chip?2008, 8, 1999–2014.
[91]
Romaniuk, R.; Dorosz, J. Technology of Soft-Glass Optical Fiber Capillaries. Proc. SPIE?2006, 6347, 634710.
[92]
Borecki, M.; Szmidt, M.; Korwin-Pawlowski, M.L.; Beblowska, M.; Niemiec, T.; Wrzosek, P. A Method of Testing the Quality of Milk Using Optical Capillaries. Photon. Let. Pol?2009, 1, 37–39.
[93]
Dress, P.; Belz, M.; Klein, K.F.; Grattan, K.T.V.; Franke, H. Water-Core-Waveguide for Pollution Measurements in the Deep Ultra-Violet. Applied Optics?1998, 37, 4991–4997.
[94]
Karlsson, A.O.; Ipsen, R.; Ardo, Y. Relationship Between Physical Properties of Casein Micelles and Rheology of Skim Milk Concentrate. J. Dairy Sci?2005, 80, 3784–3797.
[95]
McMahon, D.J.; Brown, R.J. Composition, Structure and Integrity of Casein Micelles: A Review. J. Dairy Sci?1984, 67, 499–512.