The plasma optical radiation emitted during CO2 laser welding of stainless steel samples has been detected with a Si-PIN photodiode and analyzed under different process conditions. The discrete wavelet transform (DWT) has been used to decompose the optical signal into various discrete series of sequences over different frequency bands. The results show that changes of the process settings may yield different signal features in the range of frequencies between 200 Hz and 30 kHz. Potential applications of this method to monitor in real time the laser welding processes are also discussed.
References
[1]
Ancona, A.; Sibillano, T. Monitoring Laser Welding. In Real-Time Monitoring of Welding Processes; Zhang, Y.M., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2008; pp. 260–287.
[2]
Sibillano, T.; Ancona, A.; Berardi, V.; Lugarà, P.M. A real-time spectroscopic sensor for monitoring laser welding processes. Sensors?2009, 9, 3376–3385.
Sibillano, T.; Ancona, A.; Berardi, V.; Schingaro, E.; Basile, G.; Lugara, P.M. A study of the shielding gas influence on the laser beam welding of AA5083 aluminium alloys by in-process spectroscopic investigation. Opt. Las. Eng?2006, 44, 1039–1051.
[7]
Sibillano, T.; Ancona, A.; Berardi, V.; Lugara, P.M. Real-time monitoring of laser welding by correlation analysis: The case of AA5083. Opt. Las. Eng?2007, 45, 1005–1009.
[8]
Sibillano, T.; Ancona, A.; Berardi, V.; Schingaro, E.; Parente, P.; Lugarà, P.M. Correlation spectroscopy as a tool for detecting losses of ligand elements in laser welding of aluminium alloys. Opt. Las. Eng?2006, 44, 1324–1335.
[9]
Sibillano, T.; Ancona, A.; Berardi, V.; Lugarà, P.M. Real-time monitoring of laser welding by correlation analysis: the case of AA5083. Opt. Las. Eng?2007, 45, 1005–1009.
[10]
Tu, J.; Miyamoto, I.; Inoue, T. Characterizing keyhole plasma light emission and plume scattering for monitoring 20kW class CO2 laser welding processes. J. Las. Appl?2002, 14, 146–153.
[11]
Gatzweiler, W.; Maischner, D.; Beyer, E. On-line diagnostics for process control in welding with CO2 lasers. Proc. SPIE?1998, 1020, 142–148.
[12]
Fang, J.F.; Li, L.Q.; Chen, Y.B.; Wu, L. Wavelet analysis of plasma optical signals at pool penetration in laser welding. Proc. SPIE?2005, 5642, 403–411.
[13]
Postaciouglu, N.; Kapadia, P.; Dowden, J. Capillary waves on the weld pool in penetration welding with a laser. J. Phys. D: Appl. Phys?1989, 22, 1050–1061.
[14]
Postaciouglu, N.; Kapadia, P.; Dowden, J. Theory of the oscillations o fan ellipsoidal weld pool in laser welding. J. Phys. D: Appl. Phys?1991, 24, 1288–1292.
[15]
Kroos, J.; Gratzke, U.; Vicanek, M.; Simon, G. Dynamic behaviour of the keyhole in laser welding. J. Phys. D: Appl. Phys?1993, 26, 481–486.
[16]
Klein, T.; Vicanek, M.; Kroos, J.; Decker, I.; Simon, G. Oscillations of the keyhole in penetration laser beam welding. J. Phys. D: Appl. Phys?1994, 27, 2023–2030.
[17]
Klein, T.; Vicanek, M.; Simon, G. Forced oscillations of the keyhole in penetration laser beam welding. J. Phys. D: Appl. Phys?1996, 29, 322–332.
[18]
Zeng, H.; Zhou, Z.; Chen, Y.P.; Luo, H.; Hu, L.J. Wavelet analysis of acoustic emission signals and quality control in laser welding. J. Las. Appl?2001, 13, 167–173.
[19]
Luo, H.; Zeng, H.; Hu, L.J.; Hu, X.Y.; Zhou, Z.D. Application of artificial neural network in laser welding defect diagnosis. J. Mat. Proc. Tech?2005, 170, 403–411.
[20]
Chen, C.M.; Kovacevic, R.; Jandgric, D. Wavelet transform analysis of acoustic emission in monitoring friction stir welding of 6061 aluminum. Int. J. Mach. Tools & Manuf?2003, 43, 1383–1390.
[21]
Pan, C.; Zhao, P.; Du, S.; Wang, J. Quality assessment of aluminum alloy resistance spot welding based on wavelet and statistic analysis. 2009 Int. Conf. on Information and Automation (ICIA); 2009; pp. 1438–1442.
[22]
Chui, C. An Introduction to Wavelets; Academic Press: New York, NY, USA, 1992.
[23]
Rao, R.M.; Boparadikar, A.S. Wavelet transforms—introduction to theory and applications; Addison-Wesley: Reading, MA, USA, 1998.